# Asymmetric Total Synthesis of (+)-Codeine via Intramolecular Carbenoid Insertion 

J ames D. White,* Peter Hrnciar, and Frank Stappenbeck<br>Department of Chemistry, Oregon StateUniversity, Corvallis, Oregon 97331-4003

Received J une 2, 1999
A strategy was devised for the synthesis of codeine that employed intramolecular insertion of a carbenoid into a benzylic methine CH bond for creation of the C13 quaternary center and construction of the pentacyclic skeleton of the alkaloid. The synthesis began from isovanillin, and asymmetry was introduced through catalytic hydrogenation of its Stobbe condensation product 7 over a chiral catalyst (8). The product (S)-9 was advanced to tetral one 12, which underwent Robinson annulation to give the phenanthrenone 33. The latter was brominated and treated with base to afford the fused benzofuran 35. Reduction with hydride followed by catalytic hydrogenation produced the tetracycle 44, which was converted to diazoketone 48. The latter was reacted in the presence of catalytic $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ to furnish the pentacyclic product 49. Beckmann rearrangement of the derived oxime brosylate 59 gave lactam 57, and the synthesis of $(+)-\mathbf{1}$ (the nonnatural enantiomer of codeine) was completed after oxidation to 63, introduction of $\Delta^{7,8}$ unsaturation, and exhaustive reduction.

The unique position of codeine (1) and morphine (2) in contemporary medicine continues to inspire efforts toward an understanding of its analgesic and euphoriant properties. ${ }^{1}$ Central to this endeavor is the development

of new synthetic routes that not only lead to these alkaloids in enantiomerically pure form but al so provide access to useful structural analogues. ${ }^{2}$ Approaches to the synthesis of morphine began even before its structure was revealed by Robinson in 1925, ${ }^{3}$ yet it was not until 1993 that the first asymmetric synthesis of the alkaloid was reported. ${ }^{4}$ Our own preoccupation with codeine and morphine ${ }^{5}$ has lately focused on a synthesis capable of delivering either enantiomer and which exploits a concept adopted by the pioneering efforts that envisioned a phenanthrene as an easily accessible platform for constructing the pentacyclic skeleton of morphine. ${ }^{6}$ Although subsequent investigations abandoned this strategy, favoring biomimetic ${ }^{7}$ and other approaches, ${ }^{8}$ a revisitation of the classical phenanthrene route seemed appropriate

[^0]in view of recent advances in methodology that could permit elaboration of the pentacyclic framework of $\mathbf{1}$ from this tricyclic nucleus. ${ }^{9}$ For reasons associated with our interest in examining the pharmacological properties of the unnatural enantiomorph, we chose (+)-codeine (1) as the goal of this synthesis. ${ }^{10}$

The most important strategic decision made at the outset of this work was that the C13-C15 bond of $\mathbf{1}$ would be set in place after the phenanthrene nucleus was established. Of the many successful approaches to morphine, only that of Ginsburg has empl oyed this design. ${ }^{11}$ The means for achieving the pivotal C13-C15 bond of morphine was to be an intramolecular carbenoid reaction that would generate ketone 3 from a tricyclic precursor 4. The piperidine ring of $\mathbf{1}$ would then be elaborated

through ring expansion of $\mathbf{3}$. Acquisition of $\mathbf{4}$ was envisioned from tetralin $\mathbf{5}$ bearing a single stereogenic

[^1]Table 1. Effect of Catalyst-Substrate Ratio on the Asymmetric Hydrogenation of 7

| catalysta $^{\text {a }}$ substrate <br> ratio | reaction time <br> $(\mathrm{h})$ | yield of $\mathbf{9}$ <br> $(\%)$ | ee of $\mathbf{9 c}$ <br> $(\%)$ |
| :---: | :---: | :---: | :---: |
| $2.0 \times 10^{-3}$ | 10 | 10 | 90 |
| $3.8 \times 10^{-3}$ | 10 | 50 | 92 |
| $5.6 \times 10^{-3}$ | 7 | 100 | 94 |

a Based on [RhCl(COD)]z; (MOD-DIOP/Rh(I) ratio was 2:1). ${ }^{\mathrm{b}}$ Maintained at 0.6 M in MeOH . ${ }^{\text {c }}$ Determined by chiral HPLC analysis (Chiralpak AD, hexane-i-PrOH (90:10) containing 5\% $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, flow rate $0.9 \mathrm{~mL} / \mathrm{min}$ ).
center, and it is this center that directs all subsequent stereochemical events leading to 1.

The route to 5 began with Stobbe condensation ${ }^{12}$ of isovanillin (6) with dimethyl succinate. The resultant cinnamate half-acid 7 was subjected to asymmetric hydrogenation using a chiral rhodium catalyst based on the MOD-DIOP ligand 8 of Achiwa. ${ }^{13}$ Although both the neutral [(CIRhCOD) $2_{2}$-MOD-DIOP] and cationic [(RhCOD-MOD-DIOP $)^{+} \mathrm{BF}_{4}{ }^{-}$] versions of this catalyst are reported to give good stereosel ectivity in the asymmetric reduction of substituted benzylidenesuccinate half esters, ${ }^{14}$ the neutral complex was found to be easier to prepare. Neverthel ess, satisfactory asymmetric hydrogenation of 7 with the Rh complex of (4R,5R)-8 required considerable optimization. Using a catalyst-to-substrate ratio of $2 \times$ $10^{-3}$, as suggested by Achiwa, ${ }^{14}$ necessitated long reaction times and resulted in 9 of low optical purity. Chiral HPLC analysis of the reaction course revealed that enantiomeric purity of the product decreased over time, suggesting that the chiral catalyst was chemically transformed to a species that, while still catalytically active, possessed lower or no selectivity. This observation is consistent with results published by Glaser on asymmetric hydrogenation using a (CIRhCOD) $2_{2}$-DIOP system. ${ }^{15}$ For optimization, it was necessary to increase the catalyst-to-substrate ratio nearly 3-fold to obtain good enantioselectivity (see Table 1), and under these conditions, 7 was reduced in quantitative yield to (S)-9 in 94\% enantiomeric excess. However, for practical reasons, exploratory reactions with 9 were carried out on racemic material, prepared by hydrogenation of 7 over $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst.

Not surprisingly, direct transformation of 9 to a tetralone led to the undesired isomer 10 in which intramolecular Friedel-Crafts acylation had occurred para to the free phenol. The simple expedient of bromination blocked this pathway, ${ }^{16}$ and Friedel-Crafts cyclization ${ }^{17}$ of brominated phenol 11 afforded tetralone $\mathbf{1 2}$ in good yield. The bromine substituent in 12, having served its present purpose, was removed by hydrogenoly-
(9) F or a recent synthesis of morphine based on this strategy, see Mulzer, J.; Duerner, G.; Trauner, D. Angew. Chem., Int. Ed. Engl. 1996, 35, 2830.
(10) White, J . D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1997, 62, 5250.
(11) (a) Ginsburg, D.; Pappo, R. J . Chem. Soc. 1953, 1524. (b) Elad, D.; Ginsburg, D. J. Chem. Soc. 1954, 3052.
(12) J ohnson, W. S.; Daub, G. H. Org. React. 1951, 6, 1.
(13) M orimoto, T.; Chiba, M.; Achiwa, K. Tetrahedron Lett. 1989, 30, 735.
(14) M orimoto, T.; Chiba, M.; Achiwa, K. Chem. Pharm. Bull. 1993, 41, 1149
(15) Glaser, R.; Geresh, S.; Blumenfeld, J . J. Organomet. Chem. 1976, 112, 355.
(16) Stock, L. M.; Himoe, A. J. Am. Chem. Soc. 1961, 83, 4605.
(17) E aton, P. E.; Carlson, G. R.; Lee, J. T. J . Org. Chem. 1973, 38, 4071.



| $\mathrm{H}_{2},[\mathrm{RhCl}(\mathrm{COD})]_{2}$ |
| :--- | :--- |
| $8, \mathrm{MeOH}$ |$\quad$| $100 \%$ |
| :--- |
| $(94 \%$ ee $)$ |




10
9


$\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} \quad$ 12, $\mathrm{X}=\mathrm{Br}$

$\mathrm{MeOH}, 99 \% \rightarrow 13, \mathrm{X}=\mathrm{H}$
11

8
sis over Pearlman's catalyst ${ }^{18}$ to afford 13 in virtually quantitative yield. As subsequent events unfolded, however, this bromine substituent would be recalled for a different role.
The next stage of the synthesis required conversion of keto ester 13 to a phenanthrenone derivative through Robinson annulation with methyl vinyl ketone. To effect this annulation, it was first necessary to convert $\mathbf{1 3}$ to its $\alpha$-formyl derivative 14, since this tactic facilitated Michael addition of the anion from 14 to MVK. ${ }^{19}$ Intramolecular condensation, deformylation, and saponification of $\mathbf{1 5}$ occurred in a single step to yield carboxylic acid 16 as the sole stereoisomer. The relative configuration of $\mathbf{1 6}$ was confirmed in the course of a subsequent series of transformations (vide infra). This set the stage for constructing the tetracyclic core of morphine, for which the phenolic hydroxyl group of 16 was first blocked as its acetate $\mathbf{1 7}$ and the carboxylic acid was converted through its acyl chloride to diazoketone 18. Unexpectedly, decomposition of 18 in the presence of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ gave norcaradiene 19, ${ }^{20}$ indicating that the electron-rich aro-

[^2]
$\xrightarrow[98 \%]{\mathrm{NaH}, \mathrm{HCO}_{2} \mathrm{Me}, \mathrm{THF}}$


$9 \% \left\lvert\, \begin{aligned} & \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MVK} \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2}\end{aligned}\right.$

$40 \% \left\lvert\, \begin{aligned} & \mathrm{Ac}_{2} \mathrm{O}, \mathrm{pyr} \\ & \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\end{aligned}\right.$


1. $(\mathrm{COCl})_{2}[17, \mathrm{R}=\mathrm{OH}$

65\%
matic ring is more receptive than the enone moiety to attack by the keto carbenoid. The structure of 19 was readily apparent from the chemical shifts of the ol efinic and cyclopropane carbons and protons in its NMR spectrum.

The formation of 19 from diazoketone 18 implied that a useful morphine precursor would only be accessible if carbene addition to the benzenoid ring could be suppressed. It was surmised that a bromine substituent at C8 could accomplish this, since on both steric and electronic grounds the aryl ring would become less reactive when it bears a bulky halogen. This conjecture led us back to 12, which was taken through the same Robinson annulation sequence previously used on 13. The $\alpha$-formyl tetral one $\mathbf{2 0}$ was transformed via $\mathbf{2 1}$ to carboxylic acid 22, which after acetylation produced 23. The ethyl ester $\mathbf{2 4}$ of $\mathbf{2 3}$ was a highly crystalline compound, the structure of which was determined by X-ray analysis. This not only proved the relative configuration of $\mathbf{2 3}$ but also confirmed the same stereochemical relationship in 16. Carboxylic acid 23 was converted to diazoketone 25, but treatment of the latter with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ produced another surprise, affording cyclobutanone 26. ${ }^{21}$ This substance was also highly crystalline, and its structure readily yielded to X-ray crystallographic analysis. Thus, although carbene attack had been diverted from the aryl ring by the bromine substituent, insertion into the $\gamma \mathrm{C}-\mathrm{H}$ bond of the enone was now the preferred outcome. The optimistic conjecture that $\mathbf{2 6}$ did not represent a cul-desac was entertained briefly when it was found that diol 27, obtained as a mixture of all four stereoisomers by Luche reduction ${ }^{22}$ of 26, underwent Wagner - Meerwein

[^3]rearrangement in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to give the bridged tetracycle 28, albeit in low yield. ${ }^{23}$ The latter was characterized as ketone 29, obtained by oxidation of the pair of stereoisomeric alcohols with Dess-M artin periodinane. ${ }^{24}$ Unfortunately, efficient chemical differentiation of the two olefins of the cyclohexadiene moiety of 29 proved insurmountable and effectively terminated this route.


A different strategy for fashioning the morphine C13C15 bond from 22 is conceivable if the double bond of the enone is first reduced so that a hydrogen atom is installed at the $13 \alpha$ position. In this plan, carbene insertion into the resulting benzylic CH bond should lead

[^4]



Figure 1. (a) AM1-optimized conformation of a tricyclic diazoketone showing pseudoequatorial orientation of diazo function and hydrogen atom. (b) AM 1-optimized conformation of a tetracyclic diazoketone showing pseudoaxial orientation of diazo function and hydrogen atom.
directly to the desired configuration at the C13 quaternary center. There are, however, two important requirements for this approach to be productive. First, the enone must be reduced stereoselectively from the $\alpha$ face to afford a cis BC ring fusion, and second, the $\mathrm{C} 13-\mathrm{H}$ bond and diazoketone moiety must occupy a diaxial relationship. Even if the first of these requirements is met, the AM 1-optimized geometry of the reduced structure reveals that the diazoketone moiety and the hydrogen atom it must target are both pseudoequatorial (Figure 1a). On the other hand, a structure in which the furanoid ring of morphine is closed enforces the necessary diaxial orientation of reacting partners (Figure 1b). This conformational analysis predicts that continuation of our original phenanthrene approach toward a tetracydic diazoketone would lead to successful intramolecular CH insertion at C13 by the carbene generated from this species.

A return to $\mathbf{1 6}$ for the purpose of redirecting the synthesis along this line brought another unpleasant surprise; it was discovered that partial racemization of this compound had occurred en route from 13! Fortunately, the problem was easily solved by a simple modification to the Robinson annulation sequence using carboxylic acid 30 rather than the corresponding methyl ester 13 as the substrate. Thus, after saponification of

13, formylation of the trianion of $\mathbf{3 0}$ produced 31. Annulation of the latter with MVK took a course different from that observed with $\mathbf{1 4}$ and afforded lactol 32 as an intermediate, but this substance underwent smooth intramolecular condensation in the presence of base to yield the crystalline keto acid 16 . Treatment of $\mathbf{1 6}$ with diazomethane in ethyl acetate then gave optically pure methyl ester 33.


Closure of the furanoid ring of morphine from 33 required $\alpha$ bromination of the enone followed by intramolecular displacement of bromide by the phenoxide oxygen. However, before this displacement can occur, rehybridization of the $\alpha$ carbon of the enone toward $\mathrm{sp}^{3}$ must take place. The mechanism proposed by Seshadri for this process in a conversion of 3-halocoumarins to benzo[b]furans is temporary, reversible conjugate addition of a nucleophile (hydroxide) to the $\alpha$-bromoenone. ${ }^{25}$ With this precedent in mind, 33 was treated with bromine in chloroform containing $\mathrm{NaHCO}_{3}$. Addition followed by elimination of HBr occurred as expected, but it was not possible to suppress aromatic bromination under these conditions, and dibromo compound 34 therefore became the obligatory candidate for benzofuran formation. Several basic media were investigated for this purpose, but most led to epimerization at both stereogenic centers in 34. In the event, DBU in hot benzene proved to be the most satisfactory method for the transformation of 34 to 35. These conditions are not consonant with Seshadri's reversible 1,4-addition mechanism, ${ }^{25}$ and we believe a more plausible scenario involves isomerization of 34 to the $\beta, \gamma$-enone 36 prior to cyclization. The return of C14 to its original R configuration in 35 is in accord with our observation that the trans stereoisomer of $\mathbf{1 6}$ and $\mathbf{2 4}$ is thermodynamically favored. In fact, analysis of 35 showed that $<3 \%$ epimerization had occurred during its formation from 34.

Our initial plan for saturation of the 5,13-double bond of 35 envisioned a thermodynamically controlled reduc-

[^5] 1971, 9, 1316.

tion, since calculations had convinced us that the desired cis,syn isomer (5S,13R) was the most stable of the four possible stereoisomeric products. In fact, reduction of 35 with sodium amalgam did give a single product, but after esterification with diazomethane this was found to be 37, in which reductive $\alpha$ cleavage as well as saturation of the double bond had taken place. The same keto ester was obtained upon exposure of 35 to lithium-ammonia. In an attempt to avoid $\alpha$ cleavage, 35 was treated with triethylsilane in the presence of $\mathrm{TiCl}_{4}$ in the hope that only conjugate reduction would occur. In this case, the deoxygenated tetracycle 38 was the sole product. By contrast, hydrogenation of $\mathbf{3 5}$ over a palladium catalyst in MeOH afforded 39 accompanied by alcohol 40 and methyl ether (39:40:41 $=6: 1: 1$ ). The cis relationship between hydrogens at C13 and C14 in 39 was apparent from an NOE (7\%) between these protons in its NMR spectrum. The major product 39 presumably arises from initial reduction of the keto group of 35 , leading to a pseudoaxial alcohol 42 that undergoes subsequent hydrogenolysis. ${ }^{26}$ The perpendicular orientation of the al cohol of 42 with respect to the plane of the benzofuran would facilitate both hydrogenolysis and explain the solvolytic origin of 41. Hydrogenation of the benzofuran is thus the terminal event in this scenario.

It became clear from the foregoing results that if both the tetracyclic framework of 35 and an oxygen substituent at C6 were to be preserved during hydrogenation of the benzofuran, a substrate bearing a pseudoequatorial alcohol at C6 would have better prospects. Although a $6 \alpha$ hydroxyl group would eventually require inversion to the natural $\beta$ configuration of $\mathbf{1}$, it was nevertheless

[^6]
decided to explore this option. Exposure of 35 to sodium borohydride gave the desired $6 \alpha$ alcohol 43 in quantitative yield and, as predicted, the parallel alignment of the alcohol substituent with the aromatic $\pi$ system in this isomer resulted in complete suppression of hydrogenolysis. Thus, catalytic hydrogenation of 43 afforded mainly 44, accompanied by a small amount of its stereoisomer 45 (44:45 = 22:1).


Acquisition of $\mathbf{4 4}$ brought us to the pivotal C9-C13 bond construction needed to secure the pentacyclic
framework of morphine. Ample precedent exists to suggest that a keto carbenoid derived from an ester such as 44 should undergo insertion into the CH bond of the benzylic methine to afford a bridged cyclopentanone, ${ }^{27}$ and with the diversionary pathways seen with 18 and 25 now effectively blocked, preparation of a substrate for this key cyclization became our next objective. First, alcohol 44 was protected as its MOM ether 46, after which saponification of the ester gave 47. Conversion of this carboxylic acid to its acyl chloride, followed by treatment with diazomethane furnished diazoketone 48.

Decomposition of $\mathbf{4 8}$ was carried out in the presence of several Rh (II) catalysts with varying success. The Doyle catalyst, dirhodium(II) tetrakisacetamide $\left[\mathrm{Rh}_{2^{-}}\right.$ (acam) ${ }_{4}$ ], ${ }^{28}$ is known to favor insertion by carbenes into electron-rich, methine CH bonds, and indeed this catalyst provided the highest yield (65\%) of pentacyclic ketone 49. A detailed discussion of the decomposition of 48 with various rhodium(II) catalysts will be presented elsewhere, ${ }^{29}$ but it should be noted that the transformation $48 \rightarrow 49$ represents a unique method for setting configuration at the quaternary carbon of morphine and for creating its pentacyclic skeleton.

In a parallel study that examined intramolecular carbene insertion into the $\mathrm{C} 13-\mathrm{H}$ bond of ketone 50, alcohol $\mathbf{4 4}$ was first oxidized to keto ester 51. The latter was saponified, and keto acid 52 was converted to diazoketone $\mathbf{5 0}$ by the same protocol used for the preparation of 48. Decomposition of 50 using $\mathrm{Rh}_{2}(\mathrm{OAC})_{4}$ as catalyst furnished diketone 53 in 53\% yield. Our hope was that this pathway could be continued from 53, thereby avoiding protection of the C6 hydroxyl function and affording a more direct route to the 6R configuration required for 1. The first objective in this plan was introduction of a $\Delta^{7,8}$ double bond, a task that was accomplished by acid-catalyzed phenylselenylation ${ }^{30}$ of 53 followed by oxidation of $\alpha$-selenyl ketone 54 with periodate. Unfortunately, the $\alpha, \beta$-unsaturated ketone 55 proved to be a cul-de-sac, for although we had envisioned construction of the piperidine ring of $\mathbf{1}$ via Beckmann rearrangement of the cyclopentanone oxime derived from 55, this diketone could not be induced to form the desired oxime without involvement of the enone moiety.

In contrast to 55, however, ketone 49 yielded oxime 56 quite readily, and although the latter was produced as an inseparable 1.2:1 mixture of anti and syn isomers, respectively, progression to the $\delta$-lactam 57 appeared to be straightforward. In practice, neither 56 nor the corresponding oxime tosylate ${ }^{31}$ could be induced to undergo Beckmann rearrangement under a variety of conditions, including exposure to elevated temperatures. ${ }^{32}$ The oxime derivative 58, prepared in high yield by treatment of 56 with carbonyldiimidazole, did afford a low yield of $\mathbf{5 7}$ upon reaction with Mel in hot benzene, ${ }^{33}$

[^7]44


$\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$
$99 \%$$\underset{\square}{\square 51, \mathrm{R}=\mathrm{OMe}=\mathrm{OH}}$


53

50
PhSeCl, HCl (cat) EtOAc

54

55
but it became clear from these studies that a successful transformation of 56 to 57 would necessitate careful examination of factors impeding this crucial Beckmann rearrangement. One of these is the poor alignment of the migrating bond with the breaking $\mathrm{N}-\mathrm{O}$ linkage in either stereoisomer of this rigid framework. However, if the oxime carbon of 56 is rehybridized to $\mathrm{sp}^{3}$, the stereoelectronic impediment to rearrangement is largely removed. It follows that conditions favoring addition across the $\mathrm{C}=\mathrm{N}$ bond of the oxime prior to solvolysis and migration should facilitate Beckmann rearrangement. ${ }^{34}$ This logic led us to examine the reactivity of brosylate 59 in glacial acetic acid, and to our delight, this resulted in smooth Beckmann rearrangement at room temperature. The desired $\delta$-Iactam 57 was accompanied by its isomer 60, initially in the ratio 6.5:1, respectively, if 59 was prepared and used in situ. However, if brosylate 59 was warmed to $75{ }^{\circ} \mathrm{C}$ in toluene before exposure to acetic adid, the ratio 57:60 improved to 11:1, respectively. This temperature dependence reflects equilibration of the mixture of oxime brosylates toward the less sterically crowded anti stereoisomer and specifically sets the tetrahedral intermediate 61 in a configuration that favors migration of the bridgehead carbon. Lactam 57 was separated from the minor isomer 60 by chromatography on silica and was converted to its N -methyl derivative $\mathbf{6 2}$ in high yield with methyl iodide and sodium hydride.
To complete the synthesis of $\mathbf{1}$, it was necessary to reverse the configuration of the C6 oxygen substitutent and introduce unsaturation into position C7-C8 of the C ring of 62. Inspection of molecular models suggested that, whereas hydride reduction of 35 had given the $6 \alpha$

[^8]



58



57

61


60
alcohol 43 exclusively, similar reduction of the C6 ketone of a pentacyclic structure such as 63 should yield the $6 \beta$ hydroxyl configuration. The reason for anticipating this reversal is that the presence of the lactam ring forces 63 to adopt a conformation in which the $\beta$ face of the cyclohexanone carbonyl is shielded by the aryl ring. Ketone 63 was prepared by Dess-Martin oxidation of alcohol 64, obtained after removal of the M OM protecting group from 62, and was first explored as a vehicle for introducing the $\Delta^{7,8}$ unsaturation required for 1. Deprotonation of 63 with LDA or with NaHMDS, followed by reaction of the enolate with phenylselenyl chloride, produced a 1:1 mixture of 65 and 66 , but deprotonation under thermodynamic conditions with potassium tertbutoxide gave exclusively the desired enolate, resulting in the $\alpha$-phenylselenyl ketone 66. Elimination of the selenoxide derived from 66 led to $\alpha, \beta$-unsaturated ketone 67 in good overall yield. As expected, exhaustive treatment of 67 with lithium aluminum hydride resulted in conversion of the $\delta$-lactam to a piperidine as well as reduction of the keto group to the desired $6 \beta$ al cohol. The product, (+)-codeine (68), was shown to be enantiomeric with natural ( - -codeine (1) by comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and optical rotation. O-Demethylation of natural codeine is known, ${ }^{35}$ and by extension exposure of 68 to boron tribromide would provide (+)-morphine (2).

It can be seen from the foregoing results that the complete stereogenicity of $\mathbf{1}$ arises from the single asymmetric center in (S)-9. I nversion of the latter reverses the absolute sense of the entire synthetic sequence and would therefore lead to natural (-)-codeine. Thus, either enantiomer of codeine and morphine is available in principle

[^9]


$$
90 \% \quad \rightarrow 64, R=H
$$


66

1. NaHMDS 2. PhSeCl



| $\mathrm{LiAlH}_{4}$ | $70 \%$ |
| :--- | :--- |
| THF |  |


by selection of the appropriate enantiomer of the MODDIOP ligand ${ }^{14}$ used for the asymmetric hydrogenation of 7. A further attribute of the synthetic pathway disclosed here is that pentacyclic ketones 49 and 53 afford convenient entry points to certain analogues of the morphine structure that are not readily accessible by other routes. This aspect will be the subject of a future publication.

## Experimental Section

Melting points are uncorrected. Chemical ionization (CI) high- and low-resolution mass spectra (HRMS and MS) were obtained using a source temperature of $120^{\circ} \mathrm{C}$ and $\mathrm{CH}_{4}$ as the ionizing source. Perfluorokerosene was used as a reference. X-ray crystallographic structures were solved using the direct methods program contained in the SHELXTL software package.
(E)-4-(3-Hydroxy-4-methoxyphenyl)-3-methoxycarbon-yl-3-butenoic Acid (7). To a solution of $\mathrm{NaOCH}_{3}$, prepared from sodium metal ( $12.0 \mathrm{~g}, 0.52 \mathrm{~mol}$ ) and MeOH ( 150 mL ), were added isovanillin ( $20.0 \mathrm{~g}, 0.13 \mathrm{~mol}$ ) and dimethyl succinate ( $25 \mathrm{~g}, 0.17 \mathrm{~mol}$ ). The mixture was refluxed for 6 h , poured into stirred, aqueous $\mathrm{HCl}(5 \%, 250 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and extracted with EtOAc. The extract was washed with water and was extracted with saturated aqueous $\mathrm{NaHCO}_{3}(450 \mathrm{~mL})$. The aqueous phase was separated, washed with EtOAc, and
acidified with aqueous HCl (10\%). The aqueous solution was extracted with EtOAc, and the extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was recrystallized from EtOAc-hexane ( $2: 1$ ) to afford 23.8 g (68\%) of 7 as pale yellow prisms: mp 182-183 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3347, 2883, 2939, 1733, 1687, 1606, 1588, 1511, 1444, 1278, 1212, 1163, 1126, 1022, $811 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.60-6.95(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.5,52.3,55.9,110.7,115.3,121.9,123.4$, 127.9, 142.4, 145.6, 147.5, 168.2, 177.0; MS (EI) m/z 266 (M ${ }^{+}$), 222, 175, 167, 163, 162, 147, 131, 119, 103, 91; HRMS (EI) $\mathrm{m} / \mathrm{z} 266.0790$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$ 266.0790). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}: \mathrm{C}, 58.65 ; \mathrm{H}, 5.30$. Found: C, 58.54; H, 5.27.
(3S)-4-(3-Hydroxy-4-methoxyphenyl)-3-methoxycarbonylbutanoic Acid (9). Chlororhodium(1) (4R,5R)-M OD-DIOP complex was prepared from chloro(1,5-cyclooctadiene)rhodium(I) dimer ( $18 \mathrm{mg}, 0.036 \mathrm{mmol}$ ) and (4R,5R)-MOD-DIOP ( 8,54 $\mathrm{mg}, 0.074 \mathrm{mmol})$ in THF ( 4 mL ). The complex was prehydrogenated for 10 min , and a solution of $7(1.75 \mathrm{~g}, 6.57 \mathrm{mmol})$ in MeOH ( 8 mL ) was added via syringe. The resulting mixture was stirred under an $\mathrm{H}_{2}$ atmosphere at room temperature until TLC indicated complete consumption of 7 (ca. 10 h). The mixture was concentrated under reduced pressure, and the residue was chromatographed on silica (EtOAc-hexane$\mathrm{HCOOH}, 1: 1: 0.01$ ) to afford $1.77 \mathrm{~g}(100 \%)$ of 9 as a colorless oil: $[\alpha]^{23}$ d -27.2 (c 1.34, MeOH); IR (neat) 3447, 3234, 2980, $1724,1715,1513,1274 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.44 (dd, J $=5,17 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.98$ (dd, J = $6,13 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 6.02 (dd, J $=2,8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 1 \mathrm{H}) 7.21(\mathrm{br}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHZ}, \mathrm{CDCl}_{3}$ ) $\delta 32.3$ 36.9, 42.8, 52.0, 55.9, 110.8, 115.2, 120.5, 131.1, 145.4, 145.5, 174.7, 177.0; MS m/z $268\left(\mathrm{M}^{+}\right), 208,137,131,122,103,94$, 77; HRMS m/z 268.0947 (cal cd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}$ 268.0947).
(3S)-4-(2-Bromo-5-hydroxy-4-methoxyphenyl)-3-methoxycarbonylbutanoic Acid (11). To a stirred solution of 9 $(2.50 \mathrm{~g}, 9.3 \mathrm{mmol})$ in $\mathrm{AcOH}(50 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{Br}_{2}(0.5 \mathrm{~mL}, 9.4 \mathrm{mmol})$ in $\mathrm{AcOH}(10 \mathrm{~mL})$ during 30 min . The mixture was stirred at room temperaturefor 10 min , and 5 M aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ( 5 mL ) was added. The resulting mixture was poured onto ice, and the product was extracted with EtOAc. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure to yield 3.10 g ( $92 \%$ ) of 11, which was not further purified: $[\alpha]^{23} \mathrm{D}-32.7$ (c 1.48, MeOH ); IR (neat) 3315, $3238,2983,1715,1502,1441,1277,1230,1183,1161 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.48$ (dd, J $\left.=4,17 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.71-$ $2.85(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=6,13 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.23(\mathrm{~m}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.7,37.0,41.4,52.1,56.2,113.5,115.2$, 116.7, 130.2, 145.0, 146.1, 174.4, 177.4; MS m/z 346 ( ${ }^{+}$), 269, 267, 216, 191, 159, 127, 118; HRMS m/z 346.0054 (calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{6}$ 346.0052).

Methyl (2S)-8-Bromo-5-hydroxy-6-methoxy-4-oxo-1,2,3,4-tetrahydro-2-naphthalenecarboxylate (12). To a solution of $\mathbf{1 1}(3.00 \mathrm{~g}, 8.61 \mathrm{mmol})$ in $\mathrm{MeSO}_{3} \mathrm{H}(50 \mathrm{~mL})$ was added $\mathrm{P}_{2} \mathrm{O}_{5}$ (ca. 0.5 g ), and the mixture was stirred for 10 h at ambient temperature. After addition of $\mathrm{MeOH}(30 \mathrm{~mL})$, the mixture was poured onto ice, and the product was extracted with EtOAc. The extract was washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 70 \mathrm{~mL})$ and saturated aqueous NaCl , dried ( $\mathrm{Na}_{2}-$ $\mathrm{SO}_{4}$ ), and concentrated under reduced pressure to give 2.10 g (75\%) of pure 12 as a pale yellow solid: mp $95-96^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}$ +22.6 (c 1.68, $\mathrm{CHCl}_{3}$ ); IR (neat) 2928, 1731, 1643, 1465, 1435, $1281,1245,1181 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ) $\delta 2.85-$ $3.30(\mathrm{~m}, 5 \mathrm{H}), 3.74,(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.20$, (s, 1H), 12.7 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 31.8,39.0,39.9,52.3,56.3$, 111.4, 116.9, 121.3, 131.3, 147.6, 152.7, 172.9, 202.9; MS m/z 328 ( $\mathrm{M}^{+}$), 298, 296, 271, 269, 253, 239, 191, 189, 175, 119; HRMS m/z 327.9946 (calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{5} 327.9946$ ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{5}$ : $\mathrm{C}, 47.44 ; \mathrm{H}, 3.98$. Found: C, $47.52 ; \mathrm{H}$, 3.76.

Methyl (2S)-5-Hydroxy-6-methoxy-4-oxo-1,2,3,4-tet-rahydro-2-naphthalenecarboxylate (13). A mixture of $\mathbf{1 2}$
$(1.30 \mathrm{~g}, 3.40 \mathrm{mmol}), \mathrm{NaHCO}_{3}(1.60 \mathrm{~g})$, and $\mathrm{Pd}(\mathrm{OH})_{2}$ catalyst ( 40 mg ) in MeOH ( 100 mL ) was stirred vigorously for 45 min under an $\mathrm{H}_{2}$ atmosphere at ambient temperature and pressure. The mixture was filtered, and the filtrate was concentrated under reduced pressure. To the residue was added aqueous $\mathrm{HCl}(5 \%, 10 \mathrm{~mL})$, and the product was extracted with EtOAc. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure to afford $1.00 \mathrm{~g}(99 \%)$ of pure 13 as a yellow oil: $[\alpha]^{23} \mathrm{D}+42.5$ (c 1.04, $\mathrm{CHCl}_{3}$ ); IR (neat) 2960, 1733, 1645, $1422,1263 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.85-2.90(\mathrm{~m}$, 2H ), 3.04-3.17 (m, 3H), 3.69 (s, 3H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 12.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 31.8,40.2,40.6,52.4,56.5,116.5,118.1,118.3$, 133.2, 147.3, 153.2, 173.6, 203.2; MS m/z $250\left(\mathrm{M}^{+}\right)$, 191, 159, 147, 131, 103, 91, 85, 83; HRMS m/z 250.0840 (calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}$ 250.0841). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}$ : $\mathrm{C}, 62.39$; H , 5.64. Found: C, 62.07; H, 5.57.
( $\pm$ )-3-Carbomethoxy-2-formyl-8-hydroxy-7-methoxy-1-oxo-1,2,3,4-tetrahydronaphthalene (14). To a suspension of $\mathrm{NaH}(0.98 \mathrm{~g}, 40 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added methyl formate ( $6.13 \mathrm{~g}, 10.2 \mathrm{mmol}$ ) fol lowed by a solution of $\mathbf{1 3}$ ( 2.55 $\mathrm{g}, 10.2 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$. The mixture was stirred for 10 h at ambient temperature, poured into ice-cold aqueous HCl (10\%), and extracted with EtOAc. The extract was washed with saturated aqueous NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to leave 2.76 g (98\%) of pure 14 as a pale orange oil: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.05$ (dd, J $=10,1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.20 (dd, J $=$ $12,3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.49 (m, 1H), $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.64(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 11.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 30.5,40.5,52.3,56.1,107.4,115.7,117.5$, 118.0, 130.9, 147.1, 152.4, 167.2, 173.0, 193.9. This material was unstable and was used immediately for the next reaction.
( $\pm$ )-3-Carbomethoxy-2-formyl-8-hydroxy-7-methoxy-1-oxo-2-[3-oxobutyl]-1,2,3,4-tetrahydronaphthalene (15). To a solution of $\mathbf{1 4}(2.70 \mathrm{~g}, 9.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added methyl vinyl ketone ( $3.41 \mathrm{~g}, 42.5 \mathrm{mmol}$ ) followed by $\mathrm{Et}_{3} \mathrm{~N}$ ( 1 mL ), and the mixture was stirred for 36 h at ambient temperature. The mixture was concentrated in vacuo, and the residue was taken up into EtOAc ( 100 mL ). The solution was washed with dilute $\mathrm{HCl}(100 \mathrm{~mL})$ and saturated aqueous NaCl and was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent and chromatography of the residue on silica (hexanes-EtOAc, 2:1) afforded 2.67 g ( $79 \%$ ) of 15 as a mixture of two stereoisomers (ca 1:1). This material was used immediately for the next reaction.
( $\pm$ )-4-Acetoxy-3-methoxy-6-oxo-6,7,8,8a,9,10-hexahydro9 -phenanthrenecarboxylic Acid (17). To a stirred suspensi on of $\mathbf{1 6}(0.50 \mathrm{~g}, 1.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(1.9 \mathrm{~mL})$, DMAP ( 9 mg ), and $\mathrm{Ac}_{2} \mathrm{O}(1.3 \mathrm{~mL})$. The mixture was stirred under Ar for 10 h at ambient temperature, during which time the solution became dark. The mixture was poured into aqueous $10 \% \mathrm{HCl}(70 \mathrm{~mL})$ and was extracted with EtOAc. After removal of the solvent in vacuo, the residue was chromatographed on silica (hexane/EtOAc, 1:2) to give 0.22 g (40\%) of 17 as an oil: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.91$ (dq, $\mathrm{J}=10,2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dq}, \mathrm{J}=9,1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dq}, \mathrm{J}=10$, $2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.95$ (dd, J $=11,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{J}=11,6 \mathrm{~Hz}$, 1H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.8$, 28.2. 31.7, 36.8, 38.0, 45.7, 56.2, 113.9, 126.2, 127.4, 129.7, 137.8, 139.9, 150.4, 153.0, 168.6, 174.8, 199.5.
( $\pm$ )-5-Acetoxy-10- $\alpha$-diazoacetyl-6-methoxy-3-oxo-1,2,9,-10-tetrahydrophenanthrene (18). To a solution of $\mathbf{1 7}$ (160 $\mathrm{mg}, 0.483 \mathrm{mmol}$ ) in dry benzene ( 25 mL ) was added oxalyl chloride ( $0.21 \mathrm{~mL}, 4$ equiv), and the mixture was stirred for 12 h at ambient temperature. The solvent was evaporated, and the residue was taken up into dry benzene ( 20 mL ). To this solution was added an excess of ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$, and the yellow solution was stirred for 1 h at ambient temperature. The remaining $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was decomposed with AcOH , and the solution was concentrated to leave a yellow oil that was chromatographed on silica (hexane-EtOAc, 1:1). This yielded 79 mg (47\%) of 18 as a pale yellow oil: IR (neat) 3089, 2931, 2106,
$1778,1667,1638,1504,1381,1194 ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 1.09-1.85 (m, 1H), 2.20-2.31 (m, 1H), 2.32 (s, 3H ), 2.39-2.64 $(\mathrm{m}, 3 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=5,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03$ (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$ ).
( $\pm$ )-Diketone 19. To a solution of $18(70 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $\mathrm{Rh}_{2}(\mathrm{OAC})_{4}(1 \mathrm{mg})$, and the mixture was stirred under Ar for 0.5 h at ambient temperature. The solvent was evaporated in vacuo, and the residual oil was chromatographed on silica (hexane/EtOAc, 1:1) to give 33 mg (52\%) of 19: IR (neat) 3063, 2956, 1758, 1729, 1670, 1623, 1245, 1204, $1174 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.67(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 2 \mathrm{H})$, $2.48-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}, 6.17(\mathrm{~s}, 2 \mathrm{H})$, $6.22(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,28.2$, $28.4,32.3,37.5,42.9,46.0,47.4,48.6,57.1,121.3,128.1,129.2$, 131.7, 144.0, 157.9, 168.8, 198.9, 212.0; MS (EI) m/z 326 (M ${ }^{+}$), 284, 256, 241,228, 213, 128,115; HRMS m/z 326.1153 (calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5}$ 326.1154).
( $\pm$ )-5-B romo-3-carbomethoxy-2-formyl-8-hydroxy-1-oxo-7-methoxy-1,2,3,4-tetrahydronaphthalene (20). To a suspension of NaH in mineral oil ( $60 \mathrm{wt} \%, 38 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) in toluene ( 0.5 mL ) was added methyl formate ( $1 \mathrm{~mL}, 12.4$ mmol ) followed by a solution of $12(101 \mathrm{mg}, 0.31 \mathrm{mmol})$ in toluene ( 3 mL ). The suspension was stirred at room temperature for 18 h , after which time aqueous $0.1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give 110 mg of crude 20. Due to its sensitivity to air, this material was used immediately without further purification: IR (neat) 2928, 1726, 1613, 1467, 1439, 1409, 1356, 1242, 1215, $1182 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.90(\mathrm{dd}, \mathrm{J}=4.0,1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.60(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}$ $=10 \mathrm{~Hz}, 1 \mathrm{H}), 12.18(\mathrm{~s}, 1 \mathrm{H})$.
( $\pm$ )-5-Bromo-3-carbomethoxy-2-[1-(3-butanone)]-2-formyl-8-hydroxy-1-oxo-7-methoxy-1, 2, 3, 4-tetrahydronaphthalene (21). To a solution of crude, $\mathbf{2 0}$ ( $110 \mathrm{mg}, 0.28$ mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added freshly distilled methyl vinyl ketone ( $300 \mu \mathrm{~L}, 5 \mathrm{mmol}$ ) followed by $\mathrm{Et}_{3} \mathrm{~N}$ (10 $\mu \mathrm{L}, 0.14 \mathrm{mmol}$ ). The mixture was stirred at ambient temperature for 5 h , after which time the volatile components were evaporated in vacuo. Chromatography of the residue afforded 116 mg ( $86 \%$ from 12) of 21 as a mixture of two stereoisomers: IR (neat) 2928, 1721, 1638, 1465, 1435, 1311, 1258, $1206, \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.02(\mathrm{~s}, 1 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 10.31(\mathrm{~s}$, 1 H ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 21.0,28.7,30.0,36.9,45.6$, 52.8, 56.4, 57.0, 60.4, 111.8, 121.8, 127.8, 148.2, 153.5, 171.1, 173.2, 200.0, 202.1; MS (CI) m/z 428, 426 ( ${ }^{+}$), 383, 381, 368, $366,343,341,283,281$; HRMS m/z 426.0313 (cal cd for $\mathrm{C}_{18} \mathrm{H}_{19}$ $\mathrm{BrO} \mathrm{O}_{7} 426.0314$ ).
( $\pm$ )-8-Bromo-10-carboxyl-5-hydroxy-6-methoxy-3-oxo-1,2,9,10-tetrahydrophenanthrene (22). A solution of 21 ( $2.00 \mathrm{~g}, 4.54 \mathrm{mmol}$ ) in aqueous $1.0 \mathrm{M} \mathrm{KOH}(100 \mathrm{~mL})$ was stirred at ambient temperature for 7 h . The mixture was acidified with aqueous $10 \% \mathrm{HCl}(50 \mathrm{~mL})$, during which time the red col or of the sol ution disappeared and a white precipitate was formed. Filtration of the mixture through a Büchner funnel provided 1.40 g ( $86 \%$ ) of pure 22 as a colorless solid: $\mathrm{mp} 264^{\circ} \mathrm{C}$; IR (KBr) 2928, 1702, 1609, 1466, 1245, 1181, $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$ ) $\delta 1.75(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H})$, $2.41(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 7,15(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}$, $1 \mathrm{H}), 9.71(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DM SO-d 6 ) $\delta 27.6,32.8$, $36.3,37.8,45.2,56.5,112.0,116.5,120.9,127.5,128.4,145.9$, 146.9, 153.2, 174.9, 199.2; MS (EI) m/z 368, 366 (M+), 323, 321, 242, 240, 215, 214, 209, 199, 186, 185, 153, 152, 139, 119; HRMS m/z 366.0103 (calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{5}$ 366.0103). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br} \mathrm{O}_{5} \mathrm{C} ; 52.34 ; \mathrm{H} ; 4.12$. Found: C; $52.74 ; \mathrm{H}$; 4.00.
( $\pm$ )-5-Acetoxy-8-bromo-10-carboxyl-6-methoxy-3-oxo-1,2,9,10-tetrahydrophenanthrene (23). To a suspension of $22(238 \mathrm{mg}, 0.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added $\mathrm{Ac}_{2} \mathrm{O}$
( $200 \mathrm{~mL}, 2.0 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL}, 7 \mathrm{mmol})$, and a catalytic amount of 4-(dimethylamino)pyridine. The mixture was stirred at ambient temperature for 12 h , after which time aqueous $0.1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried ( $\mathrm{Na}_{2^{-}}$ $\mathrm{SO}_{4}$ ), and concentrated in vacuo. Recrystallization of the residue from $\mathrm{Et}_{2} \mathrm{O}$ afforded 250 mg (92\%) of $\mathbf{2 3}$ as a colorless solid: $\mathrm{mp} 196^{\circ} \mathrm{C}$; IR (KBr) 2946, 1769, 1733, 1664, 1470, 1436, $1284,1263,1185,713 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H})$, 2.78 (m, 1H), $3.20(\mathrm{dd}, \mathrm{J}=16,7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.62(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.7,27.4,32.0$, $36.4,39.9,45.6,56.4,117.9,121.3,128.1,128.4,129.0,137.1$, 150.6, 152.6, 168.3, 178.0, 199.4; MS (EI) m/z 410, 408 (M ${ }^{+}$), $368,366,323,321,214,212,186,185,171,169 ;$ HRMS m/z 408.0207 (cal cd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrO}_{6} 408.0208$ ).
( $\pm$ )-5-Acetoxy-8-bromo-10-carbethoxy-6-methoxy-3-oxo-1,2,9,10-tetrahydrophenanthrene (24): IR ( KBr ) 2942, $1770,1730,1670,1601,1558,1472,1287,1262,1124,912,713$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.85(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}$, $1 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=16,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $4.15(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.1,15.2,20.7,27.5,31.9,36.0,37.3,45.7$, $56.4,61.1,117.6,121.0,128.0,128.6,129.3,136.9,150.5,152.6$, 168.2, 173.2, 199.0; MS (EI) m/z 438, 436 (M+), 396, 394, 323, 321, 279, 277, 265, 263, 242, 240, 214, 213, 185, 128; HRMS $\mathrm{m} / \mathrm{z} 436.0521$ (cal cd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrO}_{6} 436.0521$ ).
Compound $\mathbf{2 4}$ crystallized in the tetragonal space group 14(1)/a with $a=26.878$ (4) $\AA, b=26.878$ (4) $\AA, c=10.870$ (3) $\AA$, $\mathrm{V}=7852.78 \AA^{3}, \mathrm{Z}=16, \mathrm{D}_{\text {calc }}=1.479 \mathrm{~g} / \mathrm{cm}^{3}$. All 2187 nonequivalent reflections in the range of $3.5^{\circ}<2 \Theta<95^{\circ}$ were measured. The structure was solved by direct methods (SHELXTL ) using 1536 unique reflections with $\mathrm{F}>3 \sigma(\mathrm{~F})$. Full-matrix least-squares refinement with anisotropic temperature factors for all non- H atoms and calculated H atom positions led to the final discrepancy indices of $R=0.0749$ and $R_{w}=0.0776$.
( $\pm$ )-5-Acetoxy-8-bromo-10- $\alpha$-diazoacetyl-6-methoxy-3-oxo-1,2,9,10-tetrahydrophenanthrene (25). To a solution of $\mathbf{2 3}(85 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $(\mathrm{COCI})_{2}$ ( $50 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$ ), and the mixture was stirred at ambient temperature for 18 h . The solvent and residual $(\mathrm{COCl})_{2}$ were evaporated in vacuo, and the residue was taken up into $\mathrm{Et}_{2} \mathrm{O}$ ( 3 mL ). A solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL}$ ) was added, and the resulting yellow solution was stirred for 1 h at ambient temperature. The solvent was evaporated, and the residue was chromatographed on silica (hexanes-EtOAc, 1:1) to yield 63 mg (70\%) of 25: IR (neat) 2918, 2108, 1769, 1666, 1640, 1469, $1375,1288,1260,1184,1123,1019,713 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.80(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.49$ $(\mathrm{m}, 2 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H})$, 6.66 (s, 1H), $7.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.8$, $27.1,33.1,35.9,37.4,50.7,55.5,56.4,117.8,121.3,128.2,128.6$, 128.7, 137.3, 150.6, 152.8, 168.2, 194.3, 199.1. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{C} ; 52.77$; $\mathrm{H} ; 3.97 ; \mathrm{N} ; 6.48$. Found: C; $52.59 ; \mathrm{H}$; 3.94; N; 5.78.
( $\pm$ )-8-Acetoxy-11-bromo-2,3,4,5,6,7-hexadehydro-9-meth-oxy-4-oxo-15-oxotetracyclo[12.2.0 1,6.07,12. $\left.0^{1,14}\right]$-5-hexadecene (26). To a suspension of rhodium(II) acetate dimer ( $10 \mathrm{mg}, 0.02 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise during 4 h a solution of $\mathbf{2 5}(340 \mathrm{mg}, 0.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ mL ). After addition was complete, the sol vent was evaporated in vacuo. Column chromatography of the residue on silica (hexanes-EtOAc, 1:1) gave 170 mg (53\%) of 26: IR (neat) 2925, 1781, 1668, 1470, $1187 \mathrm{~cm}^{-1}$; 1 H NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}=18,4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (dd, J $=18,4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $20.6,27.3,34.1,34.7,35.3,56.4,56.6,63.9,118.0,121.0,127.9$, 128.7, 129.3, 137.4, 150.9, 153.4, 168.5, 198.2, 206.9; MS (EI) $\mathrm{m} / \mathrm{z} 406,404\left(\mathrm{M}^{+}\right), 364,362,322,320,307,305,279,277,265$, 263, 261, 242, 240, 213, 211, 198, 197, 169, 167, 116, 113; HRMS m/z 404.0259 (calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrO}_{5} 404.0259$ ).

Compound 26 crystallized in the triclinic space group P-1 with $a=9.489(2) \AA, b=11.102(2) \AA, c=16.969(3) \AA, V=$
$1786.28 \AA^{3}, Z=2, D_{\text {calc }}=1.507 \mathrm{~g} / \mathrm{cm}^{3}$. All 2340 nonequivalent reflections in the range of $3.5^{\circ}<2 \Theta<95^{\circ}$ were measured. The structure was solved by di rect methods (SHELXTL) using 2155 unique reflections with $\mathrm{F}>3 \sigma(\mathrm{~F})$. Full-matrix leastsquares refinement with anisotropic temperature factors for all non- H atoms and calculated H atom positions led to the final discrepancy indices of $R=0.1093$ and $\mathrm{R}_{\mathrm{w}}=0.1051$.
( $\pm$ )-8-Acetoxy-11-bromo-2,3,4,5,6,7-hexadehydro-4-hy-droxy-15-hydroxy-9-methoxytetracyclo[12.2.0 $\left.{ }^{1,6} .0^{7,12} .0^{1,14}\right]$ -5-hexadecene (27). To a solution of 26 ( $95 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) in aqueous $0.4 \mathrm{M} \mathrm{CeCl}_{3}(0.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(20 \mathrm{mg}$, 0.54 mmol ) in small portions. The mixture was stirred at ambient temperature for 15 min , treated with aqueous 0.1 N $\mathrm{HCl}(5 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried, and concentrated in vacuo. Column chromatography of the residue on silica (hexanes-EtOAc, 1:4) yielded 58 mg (60\%) of 27 as a mixture of four stereoisomers: IR (neat) 3392, 2927, 1760, 1469, $1198 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 2.27$ $(\mathrm{m}, 4 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}$ 1H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.13$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 20.6,20.8,26.6,26.9$, 29.4, 29.6, 32.5, 34.1, 34.7, 35.0, 43.0, 43.5, 46.5, 56.2, 64.7, $64.8,66.0,67.1,115.2,115.4,119.9,120.0,129.1,130.4,130.5$, 133.1, 135.5, 137.0, 150.4, 150.5, 168.9; MS (EI) m/z 410, 408 $\left(\mathrm{M}^{+}\right), 392,390,366,364,350,287,251,226,224,193,192$, 181, 178, 153, 152, 115, 197, 169, 167, 116, 113; HRMS m/z 408.0572 (calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrO}_{5} 408.0572$ ).
( $\pm$ )-3-Acetoxy-6-bromo-2,3,4,5,6,7-hexadehydro-15-hy-droxy-4-methoxytetracyclo-[7.5.2.0 $\left.{ }^{2,7.0^{1,10}}\right]$-10,13-hexadecadiene (28). To a solution of 27 ( $21 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) in toluene ( 2 mL ) at reflux was added a 0.1 M solution of $\mathrm{BF}_{3}$. $\mathrm{OEt}_{2}(10 \mu \mathrm{~L})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 30 s , the mixture was poured into ice-water, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried, and concentrated in vacuo, and the residue was chromatographed on silica (hexanes-EtOAc, 3:1) to give 7 mg (36\%) of $\mathbf{2 8}$ as a mixture of stereoisomers: IR (neat) 3312, 2927, 1761, 1472, 1198, 1169, 1143, $1017 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.80(\mathrm{~m}, 4 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H})$, $3.30(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~m}$, 3H), 7.13 (s, 1H); MS (EI) m/z 392, 390 (M+), 330, 304, 258, 207, 178, 165, 152, 139, 131, 120, 117, 107, 106, 105; HRMS $\mathrm{m} / \mathrm{z} 390.0457$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrO}_{4} 390.0467$ ).
( $\pm$ )-3-Acetoxy-6-bromo-2,3,4,5,6,7-hexadehydro-11-meth-oxy-15-oxotetracyclo[7.5.2.0 $\left.{ }^{2,7} .0^{1,10}\right]-10,13-h e x a d e c a d i-~$ ene (29). To a solution of $\mathbf{2 8}(7 \mathrm{mg}, 0.018 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ mL ) was added Dess-M artin periodinane ( $15 \mathrm{mg}, 0.054 \mathrm{mmol}$ ), and the mixture was stirred at ambient temperature for 0.5 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, and aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ was added. The organic layer was separated, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was washed with brine, dried, and concentrated in vacuo. The residue was chromatographed on silica (hexanes-EtOAc, 3:1) to give 5 mg (70\%) of 29: IR (neat) 2971, 2933, 2929, 1768, 1752, 1477, 1195, $1175 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $2.02(\mathrm{~s}, 3 \mathrm{H}), 2.70-3.25(\mathrm{~m}, 5 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H})$, $5,71(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.5,27.5,34.7,44.4,57.8,60.4,60.7,115.0$, 115.7, 116.4, 120.0, 124.8, 126.4, 127.6, 135.4, 139.4, 151.6, 168.2, 216; MS (EI) m/z 390, 388 (M+), 348, 346, 306, 304, 267, 225, 224, 223, 207, 165, 152, 139, 115, 91; HRMS m/z 388.0310 (calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrO}_{4}\left(\mathrm{M}^{+}\right) 388.0310$ ).
(2S)-5-H ydroxy-6-methoxy-4-oxo-1,2,3,4-tetrahydro-2naphthalenecarboxylic Acid (30). To a sol ution of $\mathbf{1 3}$ (400 $\mathrm{mg}, 1.70 \mathrm{mmol}$ ) in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ ( $1: 1,10 \mathrm{~mL}$ ) was added LiOH ( $360 \mathrm{mg}, 8.6 \mathrm{mmol}$ ), and the solution was stirred for 12 h at ambient temperature. The mixture was acidified with aqueous $\mathrm{HCl}(5 \%)$, and the product was extracted with EtOAc. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to leave 402 mg ( $100 \%$ ) of pure 30 as a yellow crystalline solid: $\mathrm{mp}>203^{\circ} \mathrm{C}$ dec; $[\alpha]^{23}{ }_{\mathrm{D}}+38.4$ (c 0.66, THF ); IR (neat) 3047, 2969, 1728, 1611, 1445, 1347, 1259, 1195, 1039 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ( 300 MHz, THF-d ${ }_{8}$ ) $\delta 2.81-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.01-$
$3.18(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 12.5(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$ ) $\delta 35.1$, 43.3, 44.0, 59.3, 120.0, 120.9, 122.4, 137.4, 150.8, 157.3, 177.1, 207.3; MS m/z 236 ( ${ }^{+}$), 191, 159, 131, 80, 78, 69; HRMS m/z 236.0684 (cal cd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$ 236.0685).
(2S)-5-H ydroxy-3-hydroxymethylidene-6-methoxy-4-oxo-1,2,3,4-tetrahydro-2-naphthalenecarboxylic Acid (31). To a suspension of KH ( $35 \mathrm{wt} \%$ suspension in mineral oil, $540 \mathrm{mg}, 4.6 \mathrm{mmol}$ ) in THF ( 15 mL ) was added a sol ution of $\mathbf{3 0}$ ( $110 \mathrm{mg}, 0.46 \mathrm{mmol}$ ) in dry THF ( 15 mL ), and the mixture was stirred for 4 h at ambient temperature. Freshly distilled $\mathrm{HCO}_{2} \mathrm{Me}(1 \mathrm{~mL}, 16 \mathrm{mmol})$ was added dropwise during 40 min . (The apparatus must be equipped with an outlet of sufficient size to accommodate the large volume of gas liberated during addition.) Stirring was continued for 3 h at ambient temperature, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4}$ Cl , and the sol ution was acidified with aqueous $\mathrm{HCl}(5 \%)$. The mixture was extracted with EtOAc, and the extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was washed with hexane to leave crude 31, which was not further purified: IR (neat) 3218 (br), 2954, 1709, 1626, 1450, 1254, $1025 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.88$ (br, 1H), 3.09 (dd, J $=7,15 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.22 (dd, J $=3,15 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.52(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 7,49(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}), 11.91(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 264$ $\left(\mathrm{M}^{+}\right), 220,204,191,159,131,97,71$; HRMS m/z 264.0633 (calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{6} 264.0634$ ).
(3R,3aR,9aS)-3,5-Dihydroxy-6-methoxy-3a-(3-oxobutyl)-3,3a,9,9a-tetrahydronaphtho[2,3-c]furan-1,4-dione (32). A sol ution of $\mathbf{3 1}$ ( $130 \mathrm{mg}, 0.49 \mathrm{mmol}$ ), methyl vinyl ketone ( 0.4 $\mathrm{mL}, 4.90 \mathrm{mmol}$ ), and $\mathrm{Et} \mathrm{t}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ mL ) was stirred for 12 h at ambient temperature. The solution was concentrated under reduced pressure, and the residue was chromatographed on silica ( 40 g , EtOAc-hexane- $\mathrm{HCO}_{2} \mathrm{H}$, 1:1:0.005) to afford 161 mg (80\%) of 32 as a pale yellow oil: IR (neat) $3418,3022,2944,1782,1718,1635,1435,1254 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.08-2.30(\mathrm{~m}, 5 \mathrm{H}), 2.55-2.72$ (m, 2H), 3.09-3.22 (m, 2H), $3.34(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 23.6,25.7,30.1,38.2,42.1$, $55.8,56.6,99.7,116.0,118.9,120.0,131.3,147.3,154.1,176.1$, 202.9, 208.6; MS m/z 334 ( ${ }^{+}$), 316, 288, 260, 242, 203, 191, 175, 163, 159, 131, 98; HRMS m/z 334.1051 (calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{7}$ 334.1053).
(8aR ,9S)-4-Hydroxy-3-methoxy-6-oxo-6,7,8,8a,9,10-hexahydro-9-phenanthrenecarboxylic Acid (16). To a stirred solution of 32 ( $420 \mathrm{mg}, 1.25 \mathrm{mmol}$ ) in THF $-\mathrm{H}_{2} \mathrm{O}$ (1:1, 30 mL ) was added NaOH ( $250 \mathrm{mg}, 6.3 \mathrm{mmol}$ ). The mixture was stirred for 10 h at ambient temperature and then was acidified with aqueous HCl (5\%). The precipitated solid was filtered off and was washed with MeOH to give 253 mg ( $70 \%$ from 31) of pure 16 as a yellow crystalline solid: $[\alpha]^{23_{D}}+235.0$ (c 0.31, DMSO); IR (neat) 3325, 2925, 1718, 1620, 1567, 1484, $1294 \mathrm{~cm}^{-1}$; 1H NMR ( 300 MHz, DMSO-d ${ }^{2}$ ) $\delta 1.70-1.81(\mathrm{~m}, 1 \mathrm{H}$ ), 2.02-2.16 (m, 1H), 2.38-2.46 (m, 3H ), 2.79-2.86 (m, 1H), 2.92 $(\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}), 12.58(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d $_{6}$ ) $\delta 33.2,38.2,41.9,50.9$, 61.4, 118.3, 123.4, 123.7, 131.8, 135.7, 151.4, 151.9, 159.3, 191.8, 207; MS m/z $288\left(\mathrm{M}^{+}\right), 243,215,187,183 ;$ HRMS m/z 288.0998 (calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$ 288.0998). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5}$ : C, 66.66; H, 5.59. Found: C, 66.61; H, 5.45. An additional $20-25 \%$ of $\mathbf{1 6}$ could be obtained by extraction of the filtrate with ether and chromatography of the residue after evaporation of the solvent.
Methyl (8aR,9S)-4-Hydroxy-3-methoxy-6-oxo-6,7,8,8a,9,-10-hexahydro-9-phenanthrenecarboxylate (33). To a suspension of $\mathbf{1 6}(1.00 \mathrm{~g}, 3.47 \mathrm{mmol})$ in EtOAc ( 30 mL ) was added a 0.7 M solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the mixture was stirred at ambient temperature until a homogeneous solution was obtained. To this sol ution was added AcOH (0.5 mL ), and stirring was continued for 10 min . The mixture was concentrated under reduced pressure, and the residue was chromatographed on silica ( $60 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-E t O A c-$ hexane, 1:2:

1) to give 0.94 g ( $90 \%$ ) of $\mathbf{3 3}$ as a colorless crystalline solid: $\mathrm{mp} 178-179{ }^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}+176.0$ (c 1.27, $\mathrm{CHCl}_{3}$ ); IR (neat) 2940, $2846,1729,1650,1480,1289 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.80-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.65(\mathrm{~m}, 3 \mathrm{H})$, $2.87-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}=12,15 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 28.5,34.0,37.3,39.9$, 46.7, 52.2, 56.7, 112.2, 118.2, 119.4, 128.2, 131.0, 145.6, 146.7, 153.6, 175.0, 201.0; MS m/z $303\left(\mathrm{M}^{+}\right)$, 243, 193, 183, 113; HRMS m/z 303.1238 (calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}$ 303.1233). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}$ : C, 67.54; H, 6.00. Found: C, 67.25; H, 5.57.

Methyl (8aR,9S)-1,5-Dibromo-4-hydroxy-3-methoxy-6-oxo-6,7,8,8a,9,10-hexahydro-9-phenanthrenecarboxylate (34). To a suspension of $33(0.10 \mathrm{~g}, 0.31 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.29 \mathrm{~g}, 3.31 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{Br}_{2}$ in $\mathrm{CHCl}_{3}(10 \%, 3.40 \mathrm{~mL}, 0.62$ mmol ) during 30 min . Stirring was continued for 1 h , the mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. Chromatography of the residue on silica ( $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$-hexane, 1:2:1) afforded 0.11 $\mathrm{g}(70 \%)$ of 34 as a yellow crystalline solid: $\mathrm{mp} 129^{\circ} \mathrm{C}$ dec; $[\alpha]^{23}{ }_{\mathrm{D}}+39.7$ (c 0.35, $\mathrm{CHCl}_{3}$ ); IR (neat) 3394, 3301, 2939, 1429, $1682,1481,1439,1268,1129 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.91-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}=5,15$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65-2.88(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, \mathrm{J}=$ $3,15 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}$, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 28.8,29.9,37.2,41.0,45.6$, 56.2, 111.2, 115.2, 123.5, 124.3, 129.0, 141.1, 145.0, 153.0, 173.3, 190.8; MS (CI) m/z 461 ( $\mathrm{M}^{+}+1$ ), 383, 303, 229, 221, 213, 135 (100). Anal. Cal cd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{5}: \mathrm{C}, 44.37 ; \mathrm{H}, 3.51$. Found: C, 44.12; H, 3.43.

Methyl (7aR,8S)-1-Bromo-3-methoxy-6-oxo-5,6,7,7a,8,9-hexahydrophenanthro[4,5-bcd]furan-8-carboxylate (35). A solution of $34(235 \mathrm{mg}, 0.51 \mathrm{mmol})$ and DBU $(0.23 \mathrm{~mL}, 1.53$ mmol ) in benzene ( 50 mL ) was stirred for 4 h at $68^{\circ} \mathrm{C}$. The mixture was cool ed to room temperature and filtered through a short column of silica, which was subsequently rinsed with hexanes-EtOAc (2:1). The eluant was concentrated under reduced pressure to yield 174 mg ( $90 \%$ ) of 35 as colorless crystals: mp $172{ }^{\circ} \mathrm{C}$ dec; $[\alpha]^{23} \mathrm{D}+140.8$ (c $0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); IR (neat) 2949, 1728, 1674, 1503, 1269, 1171, $1103 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.80-1.94$ (dq, J $=12,4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.50$2.88(\mathrm{~m}, 5 \mathrm{H}), 3.03(\mathrm{dd}, \mathrm{J}=12,17 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=4,17$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45(\mathrm{dt}, \mathrm{J}=12,4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, 7.05 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz} \mathrm{CDCl}_{3}$ ) $\delta 31.1,31.6,32.6,33.8$, 39.9, 48.4, 52.5, 57.7, 115.1, 117.5, 123.6, 128.0, 137.7, 142.9, 145.5, 145.7, 173.6, 186.3; MS (CI) m/z 381 (100), 380 ( ${ }^{+}+$ 1), 301, 243, 239, 95; HRMS (CI) m/z 379.0181 (calcd for $\mathrm{C}_{17} \mathrm{H}_{16}-$ $\mathrm{BrO}_{5} 379.0181$ ).

Methyl (2S*,8aR*,9S*)-1-Bromo-4-hydroxy-3-methoxy-6-oxo-2,5,6,7,8,8a,9,10-octahydro-9-phenanthrenecarboxylate (37). A suspension of 35 ( $100 \mathrm{mg}, 0.275 \mathrm{mmol}$ ) in 0.3 M $\mathrm{NaOH}(20 \mathrm{~mL})$ was stirred at ambient temperature until a homogeneous solution was obtained. Tothe mixture was added $\mathrm{Hg}-(10 \%) \mathrm{Na}$, and stirring was continued for 1 h . The sol ution was acidified with aqueous $\mathrm{HCl}(5 \%)$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(0.6 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$, and the solution was concentrated under reduced pressure. Chromatography of the residue on silica ( 10 g , EtOAc-hexane, 2:1) afforded 88 mg ( $85 \%$ ) of 37 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.95-2.07 (m, 2H), 2.13-2.39 (m, 3H), 2.47-2.62 (m, 1H), $2.81-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$.

Methyl (7aR*,85*)-Bromo-3-methoxy-5,6,7,7a,8,9-hexahy-drophenanthro[4,5-bcd-furan-8-carboxylate (38). To a solution of $35(50 \mathrm{mg}, 0.110 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{SiH}(50 \mathrm{~mL}, 0.31 \mathrm{mmol})$ and $1 \mathrm{M} \mathrm{TiCl}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $0.543 \mathrm{~mL}, 0.543 \mathrm{mmol}$ ). The mixture was stirred for 4 h at ambient temperature, poured onto ice, and extracted with EtOAc. The extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( 3 g , EtOAc-hexane, 1:3) gave 38 mg ( $90 \%$ ) of 38 as a colorless oil:

IR (neat) 2925, 2832, 1743, 1494, 1440, 1279, 1157, 1108, 1020 $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.01-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.68$ (pent, J $=4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.26(\mathrm{~m}, 1 \mathrm{H})$, $2.32(\mathrm{dt}, \mathrm{J}=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.90(\mathrm{~m}$, $1 \mathrm{H}), 2.92-3.11(\mathrm{~m}, 3 \mathrm{H}), 3.19$ (dd, J $=5,16 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 23.4, 23.5, 28.1, 31.4, 33.6, 48.9, 52.1, 57.1, 111.1, 113.8, 116.4, 121.1, 130.1, 141.1, 144.5, 154.2, 174.9; MS (CI) m/z 365 (M+ $+1), 335,314,307,285,217,205,189,159,123,115,103 ;$ HRMS (CI) m/z 365.0373 (calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrO}_{4} 365.0388$ ).

Catalytic Hydrogenation of 35. Methyl (4aS*,7aS*,8S*,-9cR*)-3-Methoxy-4a,5,6,7,7a,8,9,9c-octahydrophenanthro-[4,5-bcd]furan-8-carboxylate (39). A suspension of 35 (12.8 $\mathrm{mg}, 0.0337 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred under $\mathrm{H}_{2}$ at ambient temperature and pressure for 9 h. The mixture was filtered through a short column of silica, and the filtrate was concentrated under reduced pressure. Chromatography of the residue on silica ( 5 g , EtOAc-hexane, 1:3) afforded 9.8 mg ( $68 \%$ ) of 39 as a colorless oil: IR (neat) 2930, 2858, 1733, 1507, 1440, 1277, 1200, 1161, 1104, 1065 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.06-$ $1.24(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.64-$ $2.73(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ $(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.96-5.04(\mathrm{~m}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7,23.5,26.3,27.9,34.6,37.8,44.4,52.2$, 56.9, 85.9, 113.8, 119.9, 124.8, 127.0,143.6, 145.6, 175.4; MS (CI) m/z $288\left(\mathrm{M}^{+}\right), 257,229,197,97,84,69$; HRMS (CI) m/z 288.1363 (cal cd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$ 288.1362);

There was also obtained 2.3 mg (18\%) of methyl ( 4 aS*, $5 \mathrm{R}^{*}$,-7aS*,8S*,9cR*)-3,5-dimethoxy-4a,5,6,7,7a,8,9,9c-octahydro-phenanthro[4,5-bcd]furan-8-carboxylate (41) [IR (neat) 3366, 2923, 1724, 1508, 1445, 1281, 1152, $1089 \mathrm{~cm}^{-1}$; $^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.85(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.50 (t br, J $=6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.58 ( t br, J $=4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{dd}, \mathrm{J}=5,9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 20.2,24.7,26.4,33.7,37.0,45.1,52.2,57.1,59.1,76.1$, 86.4, 114.1, 119.4, 124.3, 127.7, 142.1, 148.1, 175.6; MS (CI) $\mathrm{m} / \mathrm{z} 318\left(\mathrm{M}^{+}\right), 287,259,247,227,195,187,123,97,83 ;$ HRMS (CI) $\mathrm{m} / \mathrm{z} 318.1471$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} 318.1467$ )] and 2.0 mg (15\%) of methyl (4aS*,5R*,7aS*, $8 \mathrm{~S}^{*}, 9 \mathrm{CR}{ }^{*}$ )-5-hydroxy-3-meth-oxy-4a,5,6,7,7a,8,9,9c-octahydrophenanthro[4,5-bcd]furan-8carboxylate (40): IR (neat) 3443, 2928,1 734, 1503, 1435, 1277, 1147, 1060, $940 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz} \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.51-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.87(\mathrm{~m}$, 3 H ), 3.10 (dd, J = 1, $16 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.51 (t, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.69 $(\mathrm{s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.08-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}=5,9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 19.6,24.6,28.2,33.9,36.6,48.1,52.3,56.7$, 66.2, 86.0, 113.5, 120.3, 124.4, 127.6, 141.7, 147.0, 175.5; MS (CI) m/z $304\left(\mathrm{M}^{+}\right), 287,273,245,227,215,187$; HRMS (CI) $\mathrm{m} / \mathrm{z} 304.1306$ (cal cd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$ 304.1311).

Methyl (5S,7aR,8S)-1-Bromo-5-hydroxy-3-methoxy-5,6,7,7a,8,9-hexahydrophenanthro[4,5-bcd]furan-8-carboxylate (43). To a solution of 35 ( $0.34 \mathrm{~g}, 0.90 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-i-PrOH (3:1, 40 mL ) was added sodium borohydride ( $0.34 \mathrm{~g}, 9.01 \mathrm{mmol}$ ), and the mixture was stirred for 12 h at ambient temperature. The reaction was quenched with aqueous $\mathrm{HCl}(5 \%)$, and the organic layer was separated, washed with saturated aqueous $\mathrm{NaHCO}_{3}$ and saturated aqueous NaCl , and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure furnished 0.35 g (99\%) of 43 as col orless crystals: $\mathrm{mp} 171{ }^{\circ} \mathrm{C}$ dec; $[\alpha]^{23} \mathrm{D}+105.8$ (c 1.15, $\mathrm{CHCl}_{3}$ ); IR (neat) $3400,2947,2834,1729,1493,1432,1272,1164 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 2.21-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=$ $12,16 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, \mathrm{J}=4,16 \mathrm{~Hz}$, 1H ), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.94-4.99(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 29.8,31.2,33.7,34.2,48.7,52.3$, $57.2,65.4,112.4,114.1,120.0,122.0,129.2,141.7,144.7,153.2$, 174.5; MS m/z 381(M+), 365, 303, 285, 278, 224, 149; HRMS $\mathrm{m} / \mathrm{z} 380.0260$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5} 380.0259$ ). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrO}_{5}: \mathrm{C}, 53.56 ; \mathrm{H}, 4.49$. Found: $\mathrm{C}, 53.75 ; \mathrm{H}, 4.62$.

Methyl (4aS,5S,7aS,8S,9cR)-5-Hydroxy-3-methoxy-4a,5,6,7,7a,8,9,9c-octahydrophenanthro[4,5-bcd]furan-8carboxylate (44). A suspension of 43 ( $0.35 \mathrm{~g}, 0.91 \mathrm{mmol}$ ), $\mathrm{NaHCO}_{3}(75 \mathrm{mg}, 091 \mathrm{mmol})$, and 10\% Pd/C (30 mg) in MeOH ( 20 mL ) was stirred under $\mathrm{H}_{2}$ at ambient temperature and pressure for 24 h . The mixture was filtered through a short column of silica, and the filtrate was concentrated under reduced pressure. The residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL ), and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl . The solvent was removed under reduced pressure, and the residue was chromatographed on silica ( 300 g, EtOAc-hexane, 1:1.5) to give 0.21 g (75\%) of 44 as a colorless oil: $[\alpha]^{23}$ d -4.1 (c 1.02, $\mathrm{CHCl}_{3}$ ); IR (neat) 3428, 2939, 2861, 1729, 1503, 1440, 1279, $1064 \mathrm{~cm}^{-1}$; 1H NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.05-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.72(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{br}, 1 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 2 \mathrm{H})$, 2.90-2.91(m, 1H), $3.18(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.49(\mathrm{~m}, 2 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.67-4.72(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73$ (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 23.5, 25.1, 29.8, 34.2, 38.4, 43.7, 52.3, 56.8, 71.7, 93.2, 113.9, 120.3, 124.1, 127.2, 143.5, 145.4, 175.2; MS m/z 304 (M ${ }^{+}$, 100), 287, 273, 245, 227, 187, 149, 119, 107, 102; HRMS m/z 304.1309 (calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$ 304.1307).

There was al so obtained 9.5 mg (3\%) of 45: IR (neat) 3511, 2954, 1733, 1513, 1445, 1284, 1205, 1176, $1054 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.00(\mathrm{~m}, 2 \mathrm{H})$, $2.66-2.85(\mathrm{~m}, 3 \mathrm{H}), 3.07-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.95-5.00(\mathrm{~m}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.6,24.5,28.1,33.8,36.5,45.1,52.2,56.7$, $66.2,86.0,113.4,120.2,124.4,127.6,141.7,147.0,175.5$; MS $\mathrm{m} / \mathrm{z} 304\left(\mathrm{M}^{+}\right), 244,227,215,201,199,195,187,121,119,115$, 86, 84; HRMS m/z 304.1309 (calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} 304.1311$ ).

Methyl (4aS,7aS,8S,9cR)-3-Methoxy-5-(methox)-methoxy)-4a,5,6,7,7a,8,9,9c-octahydrophenanthro[4,5-bcd]furan-8-carboxylate (46). A mixture of 44 ( $130 \mathrm{mg}, 0.43$ $\mathrm{mmol}), \mathrm{CH}_{2}(\mathrm{OMe})_{2}(1.9 \mathrm{~mL}, 21.3 \mathrm{mmol})$, and $\mathrm{P}_{2} \mathrm{O}_{5}(30 \mathrm{mg})$ in dry $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was stirred for 4 h at ambient temperature. The solid residue was filtered off, and the filtrate was neutralized with solid $\mathrm{NaHCO}_{3}(200 \mathrm{mg})$. The neutral mixture was filtered, and the filtrate was concentrated under reduced pressure. Chromatography of the residue on silica ( 30 g , hexanes-EtOAc, 2:1) afforded 129 mg (86\%) of 46 as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}-9.2$ (c $0.78, \mathrm{CHCl}_{3}$ ); IR (neat) 2939, 1733, 1503, 1445, 1108, $1054 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.05-1.19 (m, 1H), 1.25-1.38 (m, 1H), 1.63-1.70 (m, 1H), $1.85-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.18$ $(\mathrm{d}, \mathrm{J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, \mathrm{J}$ $=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.75(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 23.5, 24.9, 29.9, 34.2, 38.6, 43.7, 52.3, 55.4, 57.2, 76.1, 91.3, $95.6,115.0,120.2,124.2,127.2,143.6,145.7,175.1$; MS m/z $348\left(\mathrm{M}^{+}\right), 302,243,227,215,199,183,161,115,86,8469 ;$ HRMS m/z 348.1574 (calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6} 348.1573$ ).
(4aS,5S,7aS,8S,9cR)-3-Methoxy-5-(methoxymethoxy)-4a,5,6,7,7a,8,9,9c-octahydrophenanthro[4,5-bcd]furan-8carboxylic Acid (47). To a solution of 45 ( $100 \mathrm{mg}, 0.29 \mathrm{mmol}$ ) in THF $-\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL}, 1: 1)$ was added $\mathrm{LiOH}(50 \mathrm{mg}, 1.2 \mathrm{mmol})$, and the mixture was stirred for 20 h at ambient temperature. The mixture was acidified with aqueous HCl (10\%) and extracted with EtOAc. The extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give 100 mg (100\%) of pure 46 as a colorless oil: $[\alpha]^{23} \mathrm{D}-8.5$ (c $1.55 \mathrm{CHCl}_{3}$ ); IR (neat) 3174 (br), 2930, 1733, 1708, 1508, 1445, 1283, 1156, 1103, $1049 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.05-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.75(\mathrm{~m}$, $2 \mathrm{H}), 2.91-2.96(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.42$ $(\mathrm{m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.69$ $(\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 23.2,24.9,28.4,34.0,38.5,43.5,55.3,57.2$, 76.0, 91.2, 95.5, 115.0, 120.2, 123.9, 127.0, 143.7, 145.7, 180.7;

MS m/z $334\left(\mathrm{M}^{+}\right), 304,289,271,260,243,227,215,199,183$, 161, 115; HRMS m/z 334.1415 (calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6} 334.1417$ ).
(4aS,5S,7aS,8S,9cR )-3-Methoxy-5-(methoxymethoxy)-4a,5,6,7,7a,8,9,9c-octahydrophenanthro[4,5-bcd]furan-8-yl]-2-diazo-1-ethanone (48). A solution of $47(90 \mathrm{mg}, 0.27$ mmol ) and oxalyl chloride ( $0.2 \mathrm{~mL}, 2.2 \mathrm{mmol}$ ) in dry benzene $(30 \mathrm{~mL})$ was stirred for 18 h at ambient temperature. The solvent and excess oxalyl chloride were removed under reduced pressure, and the residue was taken up into benzene ( 25 mL ). The solution was added dropwise to $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 30$ mL ), and the mixture was stirred at ambient temperature for 1 h . Excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was removed in a stream of $\mathrm{N}_{2}$, and the solvent was removed under reduced pressure. The residue was chromatographed on silica ( 30 g , EtOAc-hexane, 1:1) to yield $61 \mathrm{mg}(63 \%)$ of 48 as a yellow oil: $\left[\alpha{ }^{23}{ }_{\mathrm{D}}-36.7\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right)\right.$; IR (neat) 3091, 2930, 2099, 1630, 1503, 1445, 1362, 1152, 1112, $1054 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05-1.39(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.58(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.81 (m, 2H), $2.93(\mathrm{~d}, \mathrm{~J}=17,1 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 1 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=$ $7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ $(\mathrm{s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, \mathrm{J}=1,8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.5,25.3,28.5,35.3,38.4,49.3,54.3$, $55.3,57.2,76.1,91.3,95.5,115.1,120.2,123.6,127.6,143.8$, 145.8, 197.2.
(1R,4S,12S,13S,16R )-9-Methoxy-13-(methoxymethoxy)-11-oxapentacyclo[8.6.1.0 $0^{1,12} \cdot 0^{4,16} \cdot 0^{6,17}$ ] heptadeca-6(17),7,9-trien-3-one (49). To a solution of 48 ( $47 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ under argon was added $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1 \mathrm{mg})$, and the mixture was stirred for 1 h at ambient temperature. The mixture was concentrated under reduced pressure, and the residue was chromatographed on silica ( $10 \mathrm{~g}, \mathrm{EtOAc}$-hexane, $1: 2)$ to afford $22 \mathrm{mg}(51 \%)$ of 49 as a col orless oil: $\left[\alpha{ }^{23} \mathrm{D}+12.0\right.$ (c $0.44, \mathrm{CHCl}_{3}$ ); IR (neat) $2941,1755,1509,1447,1283,1262$, $1041 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.21-1.31(\mathrm{~m}, 1 \mathrm{H})$, $1.34-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H})$, $2.47-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 2 \mathrm{H}), 2.72-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.93$ $(\mathrm{m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{~d}$, $\mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 19.7,27.5,28.4,42.2,49.1,50.1,53.9,55.5$, 57.0, 77.9, 90.9, 95.9, 115.3, 120.7, 122.4, 133.1, 144.0, 144.2, 217.9; MS m/z $330\left(\mathrm{M}^{+}\right), 285,257,243,199,113,83,69,55$, 49, 45; HRMS m/z 330.1469 (calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} 330.1467$ ). Analogous decomposition of 48 using $\mathrm{Rh}_{2}(\mathrm{acam})_{4}$ as the catalyst gave 49 in $65 \%$ yield.
(3aS*,9R*,9aS*,9bR*)-9-(2-Diazoacetyl)-5-methoxy-1,-3a,8,9,9a,9b-hexahydrophenanthro[4,5-bcd]furan-3(2H)one (50). A solution of $52(210 \mathrm{mg}, 0.73 \mathrm{mmol})$ and oxalyl chloride ( $325 \mu \mathrm{~L}, 3.72 \mathrm{mmol}$ ) in dry benzene ( 20 mL ) was stirred for 18 h at ambient temperature, after which time the solvent and excess oxalyl chloride were removed under reduced pressure. The residue was taken up into benzene ( 25 mL ), and the solution was added dropwise to a 0.6 M sol ution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The mixture was stirred for 1 h , and $\mathrm{N}_{2}$ was passed through the solution for 2 h to remove excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$. Most of the solvent was evaporated under reduced pressure, and the residual oil was chromatographed on silica ( 18 g , EtOAc-hexane, 1:1) to provide 190 mg ( $83 \%$ ) of 50 as a yellow oil: IR (neat) 3086, 2930, 2109, 1728, 1636, 1504, 1440, 1362, 1284, 1157, $113 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.37-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.72$ (dd, J $=6,18 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.84-2.88 (m, 1H), $2.96(\mathrm{~d}, \mathrm{~J}=18$, $1 \mathrm{H}), 2.98-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz} ,\mathrm{CDCl}{ }_{3}$ ) $\delta 23.8,27.4$, 35.0, 39.6, 41.7, 48.8, 54.7, 57.1, 87.3, 115.3, 121.0, 123.3, 124.6, 143.2, 147.0, 196.7, 207.7.

Methyl (4aS*,7aS*,8S*,9cR*)-3-Methoxy-5-oxo-4a,5,6,7,-7a,8,9,9c-octahydrophenanthro[4,5-bcd]furan-8-carboxylate (51). A mixture of $44(30 \mathrm{mg}, 0.099 \mathrm{mmol})$ and DessMartin periodinane ( $50 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was stirred for 1 h at ambient temperature. A solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}-$ $\mathrm{NaHCO}_{3}\left(5 \mathrm{~mL}, 50 \mathrm{~g}\right.$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in 200 mL of saturated aqueous $\mathrm{NaHCO}_{3}$ ) was added, and stirring was continued for
another 20 min . The $\mathrm{CHCl}_{3}$ layer was separated, washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( 5 g , EtOAc-hexane, 1:2) gave 27 mg ( $92 \%$ ) of 51 as a col orless oil: IR (neat) 2946, 1733, 1684, 1504, 1435, 1271, 1206, $1167 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.37-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~d}$, $\mathrm{J}=7,18 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.22$ $(\mathrm{d}, \mathrm{J})=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.92(\mathrm{~m}$, $1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} N M R\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.5,26.9,34.0$, $39.5,41.8,43.3,52.5,57.1,87.3,115.0,121.0,123.8,124.1$, 142.9, 146.8, 174.7, 207.8; MS m/z 302 (M+), 248, 231, 214, 187, 161, 119, 86, 84; HRMS m/z 302.1154 (calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$ 302.1154).
(4aS*,7aS*,8S*,9cR*)-3-Methoxy-5-oxo-4a,5,6,7,7a,8,9,-9c-octahydrophenanthro[4,5-bcd]furan-8-carboxylic Acid (52). To a solution of $51(50 \mathrm{mg}, 0.165 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (1:1.3, 35 mL ) was added $\mathrm{LiOH}(28 \mathrm{mg}, 0.66 \mathrm{mmol}$ ), and the mixture was stirred for 18 h at ambient temperature. The mixture was acidified with aqueous HCl (10\%) and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford 47 mg (99\%) of 52 as a colorless oil: IR (neat) 3209, 2945, 1728, 1509, 1450, 1284, 1196, 1167, 1108, $917 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.38-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.86$ (dd, J $=7,18 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.18(\mathrm{~m}$, $1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{j}=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 23.3,26.9,33.9$, $39.5,41.7,43.2,57.2,87.2,115.6,121.0,123.6,124.2$, 143.0, 146.9, 180.1, 207.7; MS m/z 288 ( $\mathrm{M}^{+}$), 260, 232, 215, 187, 183, 161, 115; HRMS m/z 288.0996 (calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} 288.0998$ ).
(1R*,12S*,16R*)-9-Methoxy-11-oxapentacyclo[8.6.1.0 ${ }^{1,12} .0^{4,14} .0^{6,17}$ ]heptadeca-6(17),7,9-triene-3,13-dione (53). To a stirred solution of $\mathbf{5 0}(0.19 \mathrm{~g}, 0.605 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ under argon was added $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (ca. 2 mg ), and the mixture was stirred for 1 h at ambient temperature. The solvent was removed under reduced pressure, and the residue was chromatographed on silica ( 30 g , EtOAchexane, 1:2) to furnish 91 mg (53\%) of 53 as a colorless oil: IR (neat) 2941, 2839, 1740, 1721, 1503, 1442, 1283, $1088 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.48-1.63(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.11$ $(\mathrm{m}, 1 \mathrm{H}), 2.39-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=$ $17 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.92(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 6.62$ $(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.7,27.5,40.7,42.6,49.9,52.0,53.3,56.9,88.2$, 115.5, 121.7, 121.9, 129.9, 143.5, 145.1, 207.3, 216.6; MS m/z $284\left(\mathrm{M}^{+}\right), 256,242,227,213,199,185,181,128,121,115 ;$ HRMS m/z 284.1047 (calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$ 284.1048).
(1R*,4S*,12S*,16R*)-9-Methoxy-11-oxapentacyclo[8.6.1.0 ${ }^{1,12} .0^{4,16} .0^{6,17}$ ]heptadeca-6(17),7,9,14-tetraene-3,13dione (55). To a stirred solution of $52(48 \mathrm{mg}, 0.17 \mathrm{mmol})$ in EtOAc ( 7 mL ) was added $\mathrm{PhSeCl}(46 \mathrm{mg}, 0.24 \mathrm{mmol}$ ), followed by aqueous $\mathrm{HCl}(36 \%, 5$ drops), and the mixture was stirred for 5 h at ambient temper ature. The mixture was neutralized with solid $\mathrm{NaHCO}_{3}(30 \mathrm{mg})$ and was stirred for another 30 min. The mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was taken up into $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(1: 1.5,25 \mathrm{~mL}), \mathrm{NaIO}_{4}(150 \mathrm{mg}, 0.70 \mathrm{mmol})$ was added, and the solution was stirred for 30 h at room temperature, after which time most of the THF was removed under reduced pressure. The residue was extracted with EtOAc, and the extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( 5 g , EtOAc-hexane, 2:1) gave 19 mg ( $46 \%$ ) 55 as a colorless oil: IR (neat) 2959, 2842, 1748, 1684, 1503, 1450, 1284, 1264, 1176, $1084,927,805 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.89$ (dd, J $=5,17 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=2,17 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.10(\mathrm{~m}$, 1H ), 3.46-3.50 (m, 1H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=$ $2,10 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, \mathrm{J}=2,10 \mathrm{~Hz}$, 1 H ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 28.3,41.0,49.5,49.6,52.1$, $56.9,86.3,115.6,121.3,122.0,132.3,134.7,143.1,144.6,145.3$,
193.3, 215.3; MS m/z 282 ( $\mathrm{M}^{+}$), 254, 226, 211, 201, 185, 85, 83; HRMS m/z 282.0891 (calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$ 282.0892).
(1R,4S,12S,13S,16R)-9-Methoxy-13-(methoxymethoxy)-11-oxapentacyclo[8.6.1.0 $\left.{ }^{1,12} .0^{4,16} .0^{6,17}\right]$ heptadeca-6(17),7,9trienone Oxime (56). A solution of 49 ( $20 \mathrm{mg}, 0.062 \mathrm{mmol}$ ), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(6.3 \mathrm{mg}, 0.091 \mathrm{mmol})$, and $\mathrm{NaOAc}(16.5 \mathrm{mg}, 0.12$ mmol ) in MeOH ( 10 mL ) was stirred for 6 h at ambient temperature. The mixture was concentrated under reduced pressure, and the residue was taken up into $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$. The resulting solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( 20 g , EtOAc-hexane 1:1) afforded 18.8 mg ( $90 \%$ ) of 56 as a col orless oil: IR (neat) 1073, 1284, 1440, 1507, 1606, 1640, $1552,2935,3374 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{Mz}, \mathrm{CDCl}_{3}$ ) $\delta 1.16-1.24$ (m, 1H ), 1.39-1.51 (m, 1H ), 1.66-1.75 (m, 1H), 1.73-1.91 (m, $1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H})$, 2.73-3.10 (m, 3H), 3.40 (s, 3H), 3.51-3.58 (m, 1H), 3.87 (s, $3 \mathrm{H}), 4.69-4.81(\mathrm{~m}, 3 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8$ Hz, 1H ); MS (EI) m/z 345(M+), 241, 199, 167, 149, 115; HRMS $\mathrm{m} / \mathrm{z} 345.1575$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5} 345.1576$ ).
(1R,5S,135,14S,17S)-10-Methoxy-14-(methoxymethoxy)-12-oxa-4-azapentacyclo[9.6.1.0 ${ }^{1,13} .0^{5,17} .0^{7,18}$ ]octadeca-7(18),8,10-trien-3-one (57). A solution of 56 ( $25 \mathrm{mg}, 0.072$ mmol ), p-bromobenzenesulfonyl chloride ( $28 \mathrm{mg}, 0.11 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}(16 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$, and a catalytic amount of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred for 1 h at ambient temperature. The solvent was removed under reduced pressure, and the residue was taken up into $\mathrm{AcOH}(2 \mathrm{~mL})$. The resulting solution was stirred for 1 h and was neutralized with saturated, aqueous $\mathrm{NaHCO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( 6 g , EtOAc-MeOH, 12:1) gave 17 mg ( $69 \%$ ) of 57 as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}+114.2$ (c 1.47, $\mathrm{CHCl}_{3}$ ); IR (neat) 3271, 2932, 1673, 1509, 1437, 1288, 1119, 1037, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.92-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.80(\mathrm{~m}$, 1H), 1.92-2.01 (m, 1H), 2.29 (dt, J = 4, $13 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (d, J $=17 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 3.35-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~d}$, $\mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 23.0,28.0,28.3,31.1,38.2,42.6$, $43.8,51.3,55.4,57.1,76.4,95.3,95.6,115.7,121.5,130.3,144.6$, 144.9, 170.9; MS (CI) m/z 346 ( $\mathrm{M}^{+}+1$ ), 339, 323, 284, 246, 185, 169, 141, 125, 89, 86, 84, 78, 75, 73; HRMS m/z 345.1575 (calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5} 345.1576$ ).
(1R,5S,135,14S,17S)-10-Methoxy-14-(methoxymethoxy)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0 $\left.{ }^{1,13} .0^{5,17} .0^{7,18}\right]$ -octadeca-7(18),8,10-trien-3-one (62). To a solution of 57 (24 $\mathrm{mg}, 0.069 \mathrm{mmol}$ ) in dry benzene ( 3 mL ) were added NaH ( 55 wt \% suspension in mineral oil, $12 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) and $\mathrm{CH}_{3} \mathrm{l}$ ( $43 \mu \mathrm{~L}, 0.69 \mathrm{mmol}$ ), and the mixture was heated at reflux for 5 h . The mixture was diluted with $\mathrm{EtOH}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2$ mL ), and the organic phase was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phase was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( $4 \mathrm{~g}, \mathrm{EtOAc}-\mathrm{MeOH}$, 12:1) furnished 24 mg (95\%) of 62 as a colorless oil: $[\alpha]^{23} \mathrm{D}$ +148.9 (c 0.092, $\mathrm{CHCl}_{3}$ ); IR (neat) 2935, 1655, 1636, 1509, $1440,1284,1108,1054,1005 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.98-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{dt}, \mathrm{J}=4,13 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=17$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.38(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=$ $7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ $(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 23.0,26.8,28.0,34.2,39.2,43.1,44.9,55.4,57.2,59.0$, 76.4, 95.1, 95.6, 115.7, 121.2, 121.5, 130.4, 144.6, 144.9, 168.4; MS m/z $359\left(\mathrm{M}^{+}\right), 329,314,298,286,256,243,225,211,199$, 185; HRMS m/z 359.1733 (cal cd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} 359.1733$ ).
(1R,5S,13S,14S,17S)-14-Hydroxy-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0 ${ }^{1,13} \cdot 0^{5,17} .0^{7,18}$ ]octadeca-

7(18),8,10-trien-3-one (64). A solution of $62(22 \mathrm{mg}, 0.061$ $\mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ and aqueous $\mathrm{HBr}(36 \%, 10 \mathrm{~mL})$ was stirred for 2 h at ambient temperature. The mixture was neutralized with solid $\mathrm{NaHCO}_{3}(30 \mathrm{mg})$ and filtered, and the filtrate was concentrated under reduced pressure. Chromatography of the residue on silica ( 3 g , EtOAc-MeOH, 9:1) gave $18 \mathrm{mg}(95 \%)$ of 64 as a colorless oil: $[\alpha]^{23} \mathrm{D}+148.9$ (c 0.092 , $\mathrm{CHCl}_{3}$ ); IR (neat) 3394, 2936, 1620, 1509, 1440, 1280, 1097 $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz} \mathrm{CDCl}_{3}$ ) $\delta 1.00-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.28-$ $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dt}$, $\mathrm{J}=4,13 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dd, J $=4,18 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}=18$ $\mathrm{Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 3.33-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.73(\mathrm{~m}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.76 (d, J $=8 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 23.2,26.8$, 29.4, 34.2, 39.2, 42.9, 44.9, 56.8, 59.0, 72.3, 97.0, 114.8, 121.3, $121.5,130.5,144.4,144.7,168.4 ;$ MS m/z $315\left(\mathrm{M}^{+}\right)$, 301, 286, 258, 243, 229, 213, 199, 185, 178; HRMS m/z 315.1472 (calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} 315.1471$ ).
(1R,5S,13S,17S)-10-Methoxy-4-methyl-12-oxa-4azapentacyclo[9.6.1.0 ${ }^{1,13} .0^{5,17} .0^{7,18}$ ]octadeca-7(18),8,10-triene-3,14-dione (63). A mixture of 64 ( $16 \mathrm{mg}, 0.051 \mathrm{mmol}$ ) and Dess-Martin periodinane ( $26 \mathrm{mg}, 0.061 \mathrm{mmol}$ ) in $\mathrm{CHCl}_{3}$ ( 3 mL ) was stirred for 1 h at ambient temperature. The suspension was treated with a $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}-\mathrm{NaHCO}_{3}$ solution (4 $\mathrm{mL}, 50 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in 200 mL of saturated aqueous $\mathrm{NaHCO}_{3}$ ), and the chloroform layer was separated, washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( 4 g , EtOAc-MeOH, 11:1) gave 15 mg (96\%) of 63 as a colorless oil: $[\alpha]^{23} \mathrm{D}+181.3\left(c 0.71, \mathrm{CHCl}_{3}\right)$; IR (neat) 2935, 1738, 1636, 1504, 1440, 1284, 1101, $771 \mathrm{~cm}^{-1} \mathrm{H}^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.26-1.39(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H})$, $2.40-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=4,18 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.80(\mathrm{~m}$, $3 \mathrm{H}), 2.98$ (d, J $=18 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.04 (s, 3H), 3.78-3.80 (m, 1H), $3.91(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 25.3,26.9,34.3,39.1$, 39.2, 44.5, 46.9, 57.2, 58.7, 91.6, 116.2, 121.2, 122.1, 127.3, 143.9, 146.2, 167.7, 206.0; MS m/z 313 ( ${ }^{+}$), 256, 241, 231, 212, 198, 181, 131, 121, 97, 83, 71; HRMS m/z 313.1314 (calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} 313.1341$ ).
(1R,5S,13S,17S)-10-Methoxy-4-methyl-12-oxa-4azapentacyclo[9.6.1.0 ${ }^{1,13} .0^{5,17} .0^{7,18}$ ]octadeca-7(18),8,10,15-tetraene-3,14-dione (67). To a solution of $63(35 \mathrm{mg}, 0.11$ mmol ) in THF ( 5 mL ) at $0{ }^{\circ} \mathrm{C}$ under argon was added a 1 M solution of KO-t-Bu in t-BuOH ( $130 \mathrm{~mL}, 0.13 \mathrm{mmol}$ ), and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. A solution of PhSeCl ( $28.7 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) in THF ( 0.4 mL ) was added, and the mixture was allowed to warm to room temperature during 1 h. The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5$ mL ) and was extracted with $\mathrm{CHCl}_{3}$. The extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was
taken up into $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(1: 1,4 \mathrm{~mL}), \mathrm{NaIO}_{4}(180 \mathrm{mg}, 0.88$ mmol ) was added, and the mixture was stirred for 30 h at ambient temperature. The mixture was extracted with $\mathrm{CHCl}_{3}$, and the extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( 3 g , EtOAc-EtOH, 11:1) produced 22 mg ( $64 \%$ ) of 67 as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}+168.4$ (c $0.012, \mathrm{CHCl}_{3}$ ); IR (neat) 1159, 1287, 1449, 1505, 1634, 1681, 2859, $2929 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.56(\mathrm{dd}, \mathrm{J}=4,18 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}$, $\mathrm{J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.87 (s, 3H), $4.05(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, \mathrm{J}=3,10 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 29.9,34.4,38.4$, $43.1,43.2,57.3,58.5,87.7,118.2,121.0,122.3,129.0,134.1$, 143.9, 144.2, 145.2, 167.6, 193.7; MS (CI) m/z 321 ( $\mathrm{M}^{+}+\mathrm{H}$ ), 201, 130, 121, 115, 111, 102, 97 86, 83, 69; HRMS (CI) m/z 312.1235 (cal cd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4} 312.1236$ ).
(+)-Codeine (1). To a stirred suspension of $\mathrm{LiAlH}_{4}(6.10$ $\mathrm{mg}, 0.16 \mathrm{mmol})$ in dry THF ( 0.5 mL ) was added a solution of 67 ( $5 \mathrm{mg}, 0.0196 \mathrm{mmol}$ ) in THF ( 1 mL ), and the mixture was refluxed for 6 h . After being cooled to ambient temperature, the mixture was treated with a saturated aqueous solution of Rochelle's salt ( 1 mL ) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with saturated aqueous NaCl , dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Chromatography of the residue on silica ( $2 \mathrm{~g}, \mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{NH}$, 20:1) yielded 4.1 mg ( $70 \%$ ) of 1 as a colorless solid: mp 149$152^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}+137.5$ (c 0.16, EtOH); ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.90(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}), 2.11-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=6,18$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44-2.47$ (m, 1H), 2.49 (s, 3H), 2.65-2.68 (m, 1H), 2.78 (br s, 1H), $3.05(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 4.17-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.30$ $(\mathrm{m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ $(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.8,35.6$, 40.6, 43.0, 43.1, 46.8, 56.6, 59.3, 66.5, 91.3, 113.3, 119.9, 128.0, 131.0, 133.9, 139.6, 142.6, 146.5. This material was spectroscopically identical with a sample of natural ( - )-codeine. ${ }^{\text {5a }}$

Acknowledgment. We are indebted to Professor J ohn Block, College of Pharmacy, Oregon State University, for a sample of (-)-codeine and to Dr. Alex Y okochi for assistance with the determination of X-ray crystal structures of $\mathbf{2 4}$ and 26. Financial support was provided by the National Science F oundation (9711187CHE ), by DuPont Pharmaceutical Co., and by Pfizer Inc.

Supporting Information Available: Complete X-ray crystall ographic data for $\mathbf{2 4}$ and $\mathbf{2 6}$ and NMR spectra ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ ) of synthesized compounds. This material is available free of charge via the Internet at http://pubs.acs.org.
J O990905Z


[^0]:    (1) Lednicer, D. Central Analgesics; Wiley: New York, 1982; pp 137213.
    (2) Hudlicky, T.; Butora, G.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R. Studies in Natural Products Chemistry; Rahman, A.-u., Ed.; Elsevier: Amsterdam, 1996; pp 43-154.
    (3) Gulland, J . M.; Robinson, R. Mem. Proc. Manch. Lit. Soc. 1925, 69, 79.
    (4) Hong, C. Y.; Kado, N.; Overman, L. E. J . Am. Chem. Soc. 1993, 115, 11028.
    (5) (a) White, J. D.; Caravatti, G.; Kline, T. B.; Edstrom, E.; Rice, K. C.; Brossi, A. Tetrahedron 1983, 39, 2393. (b) White, J. D.; Butlin, R. J.; Hahn, H.-G.; J ohnson, A. T. J. Am. Chem. Soc. 1990, 112, 8595.
    (6) (a) Pschorr, A. T. Ber. 1896, 29, 496. (b) Fieser, L. F.; Holmes, H. L. J. Am. Chem. Soc. 1936, 58, 2319. (c) Robinson, R.; Ghosh, R. J . J. Chem. Soc. 1944, 506.
    (7) Schwartz, M. A.; Pham, P. T. K. J . Org. Chem. 1988, 53, 2318 and references cited.

[^1]:    (8) (a) Evans, D. A.; Mitch, C. H. Tetrahedron Lett. 1982, 23, 285. (b) Moos, W. H.; Gless, R. D.; Rapoport, H. J. Org. Chem. 1983, 48, 227. (c) Butora, G.; Hudlicky, T.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R.; Abboud, K. Tetrahedron Lett. 1996, 37, 8155. (d) Toth, J. E.; Hamann, P. R.; Fuchs, P. L. J. Org. Chem. 1988, 53, 4694. (e) Parker, K. A.; Fokas, D. J. Am. Chem. Soc. 1992, 114, 9688. (f) Tius, M. A.; Kerr, M. A. J. Am. Chem. Soc. 1992, 114, 5959.

[^2]:    (18) Prugh, J. D.; Rooney, C. S.; Deana, A. A.; Ramjit, H. G. Tetrahedron Lett. 1985, 26, 2947.
    (19) Banwell, M. G.; L ambert, J . N.; Corbett, M.; Greenwood, R. J .; Gulbis, J . M.; Mackay, M. F. J. Chem. Soc., Perkin Trans 1 1992, 1415. (20) For an analogous example, see Adams, J.; Spero, D. M. Tetrahedron 1991, 47, 1765.

[^3]:    (21) Cyclobutanone formation via intramolecular decomposition of a $\alpha$-diazoketone has been observed previously, albeit as a minor pathway (Wenkert, E.; Davis, L. L.; Mylari, B. L.; Sol omon, M. F.; da Silva, R. R.; Shulman, S.; Warnet, R. J .; Ceccherelli, P.; Curini, M.; Pellicciari, R. J. Org. Chem. 1982, 47, 3242).

[^4]:    (22) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454.
    (23) F or a related example see White, J. D.; Matsui, T.; Thomas, J.
    A. J. Org. Chem. 1981, 46, 3376.
    (24) Dess, D. B.; Martin, J. C. J . Am. Chem. Soc. 1991, 113, 7277.

[^5]:    (25) Saroja, T.; Seshadri, T. R.; Muckerjee, S. K. Indian J. Chem.

[^6]:    (26) Analogous reduction was observed by Gates in the course of his studies on thebaine (Gates, M.; Klein, D. A. J. Med. Chem. 1967, 10, 380).

[^7]:    (27) Burke, S. D.; Grieco, P. A. Org. React. 1979, 26, 361.
    (28) Doyle, M. P.; Bagheri, V.; Wandless, T. J.; Harn, N. K.; Brinker, D. A.; Eagle, C. T.; Loh, K.-L.J. Am. Chem. Soc. 1990, 112, 1906.
    (29) The product distribution from decomposition of 48 was found to depend markedly on the Rh(II) catalyst employed as well as on small structural variations in the substrate (Hrnciar, P. Ph.D. Thesis 1999, Oregon State University).
    (30) I ijima, I.; Rice, K. C.; Silverton, J. V. Heterocycles 1977, 6, 1157. (31) Oppolzer, W.; Fehr, C.; Warneke, J. Helv. Chim. Acta 1977, 60, 48.
    (32) Corey, E. J.; Arnett, J . F.; Widiger, G. N. J. Am. Chem. Soc. 1975, 97, 430.
    (33) Kamijo, T.; Harada, H.; Iizuka, K. Chem. Pharm. Bull. 1984, 32, 2560.

[^8]:    (34) F or a contemporary view of the classical Beckmann rearrangement, see: N guyen, M. T.; Raspoet, G.; Vanquickenborne, L. G. J . Am. Chem. Soc. 1997, 119, 2552.

[^9]:    (35) Rice, K. C. J. Med. Chem. 1977, 20, 164.

